• Chinese Optics Letters
  • Vol. 22, Issue 3, 031903 (2024)
Jiefu Zhu1, Tingting Ding2, Xuerui Sun1, Fengchao Ni1, Hao Li1, Shijie Liu1, Yuanlin Zheng1、3、*, and Xianfeng Chen1、3、4、**
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202422.031903 Cite this Article Set citation alerts
    Jiefu Zhu, Tingting Ding, Xuerui Sun, Fengchao Ni, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Broadband second-harmonic generation in thin-film lithium niobate microdisk via cyclic quasi-phase matching[J]. Chinese Optics Letters, 2024, 22(3): 031903 Copy Citation Text show less
    References

    [1] A. Boes, L. Chang, C. Langrock et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [2] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photonics Rev., 14, 2000088(2020).

    [3] Y. Li, Z. Huang, W. Qiu et al. Recent progress of second harmonic generation based on thin film lithium niobate [Invited]. Chin. Opt. Lett., 19, 060012(2021).

    [4] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).

    [5] R.-R. Xie, G.-Q. Li, F. Chen et al. Microresonators in lithium niobate thin films. Adv. Opt. Mater., 9, 2100539(2021).

    [6] J. Lin, F. Bo, Y. Cheng et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [7] X. Sun, Y. Wu, C. Lu et al. Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film. Chin. Opt. Lett., 20, 101301(2022).

    [8] L. Wang, X. Zhang, F. Chen. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide. Laser Photonics Rev., 15, 2100409(2021).

    [9] Q. Guo, R. Sekine, L. Ledezma et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics, 16, 625(2022).

    [10] M. Li, H. Liang, R. Luo et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev., 13, 1800228(2019).

    [11] J. Ma, F. Xie, W. Chen et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev., 15, 2000521(2021).

    [12] J.-Y. Chen, Z.-H. Ma, Y. M. Sua et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244(2019).

    [13] J. Lu, M. Li, C.-L. Zou et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654(2020).

    [14] R. Gao, H. Zhang, F. Bo et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of q-factor above 108. New J. Phys., 23, 123027(2021).

    [15] J. Lin, N. Yao, Z. Hao et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [16] Z. Hao, L. Zhang, W. Mao et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Res., 8, 311(2020).

    [17] Z. Hao, J. Wang, S. Ma et al. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res., 5, 623(2017).

    [18] X. Ye, S. Liu, Y. Chen et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett., 45, 523(2020).

    [19] J. Zhu, X. Sun, T. Ding et al. Sum-frequency generation in a high-quality thin film lithium niobate microdisk via cyclic quasi-phase matching. J. Opt. Soc. Am. B, 40, D44(2023).

    [20] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626(2017).

    [21] L. Zhang, Z. Hao, Q. Luo et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett., 45, 3353(2020).

    [22] S. Liu, Y. Zheng, Z. Fang et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett., 44, 1456(2019).

    [23] B.-Y. Xu, L.-K. Chen, J.-T. Lin et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron., 65, 294262(2022).

    [24] Y. Okawachi, M. Yu, B. Desiatov et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702(2020).

    [25] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95(2022).

    [26] J. Szabados, D. N. Puzyrev, Y. Minet et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett., 124, 203902(2020).

    [27] X. Wang, K. Jia, M. Chen et al. 2-µm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator. Photonics Res., 10, 509(2022).

    [28] I. Ricciardi, S. Mosca, M. Parisi et al. Optical frequency combs in quadratically nonlinear resonators. Micromachines, 11, 230(2020).

    [29] R. Wu, J. Zhang, N. Yao et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).

    [30] M. Wang, R. Wu, J. Lin et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [31] D. S. Weiss, V. Sandoghdar, J. Hare et al. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 20, 1835(1995).

    [32] J. Zhu, S. K. Ozdemir, Y.-F. Xiao et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46(2010).

    Jiefu Zhu, Tingting Ding, Xuerui Sun, Fengchao Ni, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen. Broadband second-harmonic generation in thin-film lithium niobate microdisk via cyclic quasi-phase matching[J]. Chinese Optics Letters, 2024, 22(3): 031903
    Download Citation