[1] DUFFO N, CORBELLA I, TORRES F, et al. Advantages and drawbacks of near field characterization of large aperture synthesis radiometers[C]// Proceedings of IEEE International Conference. Rome, Italy:IEEE, 2004.
[2] TANNER A B, LAMBRIGSTEN B H, GAIER T M. Near field characterization of the GeoSTAR demonstrator[C]// IEEE International Geoscience and Remote Sensing Symposium. Denver, CO, USA:IEEE, 2006:2529-2532. doi:10.1109/IGARSS.2006.654.
[7] LAURSEN B, SKOU N. A spaceborne synthetic aperture radiometer simulated by the TUD demonstration model[J]. IEEE International Geoscience and Remote Sensing Symposium, 1994(3):1314-1316. doi:10.1109/IGARSS.1994.399426.
[8] CHEN J F, ZHU X W, ZHANG S, et al. General G-matrix imaging method for near-field millimeter-wave SAIR with any arrays[C]//IEEE MIT-S International Wireless Symposium(IWS). Chengdu, China:[s.n.], 2018. doi:10.1109/IEEE-IWS.2018.8400862.
[10] ADRIANO C, IGNASI C S. The processing of hexagonally sampled signals with standard rectangular techniques:application to 2-D large aperture synthesis interferometric radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 183-190. doi:10.1109/36.551946.
[12] WU J, ZHANG C, LIU H, et al. Performance analysis of circular antenna array for microwave interferometric radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3261-3271. doi:10.1109/TGRS.2017.2667042.
[13] LAURSEN B, SKOU N. Synthetic aperture radiometry evaluated by a two-channel demonstration model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):822-832. doi:10.1109/36.673675.
[15] HAN D H, LIU H, ZHANG D H, et al. Passive submillimeter-wave imaging demonstrated by a two-element interferometer[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6):656-661. doi:CNKI:SUN:HWYH.0.2016-06-004.