[1] JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging—modern techniques and applications[J]. Laser & Photonics Reviews, 2011,5(1):124-166. doi:10.1002/lpor.201000011.
[5] HERNANDEZ-SERRANO A I, LEIGH S J, PICKWELL-MACPHERSON E. In-line evanescent-field-coupled THz bandpass mux/demux fabricated by additive layer manufacturing technology[J]. OSA Continuum, 2020, 3(9): 2407-2414. doi: 10.1364/ OSAC.399389.
[6] SUN Yiwen, DEGL'INNOCENTI R, RITCHIE D A, et al. Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry[J]. Photonics Research, 2018,6(12):1151-1157. doi:10.1364/PRJ.6.001151.
[7] PROPHETE C, SIK H, KLING E, et al. Terahertz and visible probing of particles suspended in air[J]. IEEE Transactions on Terahertz Science and Technology, 2019,9(2):120-125. doi:10.1109/TTHZ.2019.2891077.
[8] PIAO Zhisheng,TANI M,SAKAI K. Carrier dynamics and terahertz radiation in photoconductive antennas[J]. Japanese Journal of Applied Physics, 2000,39(1R):96. doi:10.1143/JJAP.39.96.
[10] TANI M,MATSUURA S,SAKAI K,et al. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs[J]. Applied Optics, 1997,36(30):7853-7859. doi:10.1364/AO.36.007853.
[11] KUZNETSOV K,KLOCHKOV A,LEONTYEV A,et al. Improved InGaAs and InGaAs/InAlAs photoconductive antennas based on (111)-oriented substrates[J]. Electronics, 2020,9(3):495. doi:10.3390/electronics9030495.
[12] KOHLHAAS R B,LIEBERMEISTER L,BREUER S,et al. Fiber coupled transceiver with 6.5 THz bandwidth for terahertz time-domain spectroscopy in reflection geometry[J]. Sensors, 2020,20(9):2616. doi:10.3390/s20092616.
[13] YACHMENEV A E,LAVRUKHIN D V,KHABIBULLIN R A,et al. Photoconductive THz detector based on new functional layers in multi-layer heterostructures[J]. Optics and Spectroscopy, 2021,129(8):851-856. doi:10.1134/S0030400X21060187.
[14] NANDI U,MOHAMMADI M,LU H,et al. Material properties and performance of ErAs:In(Al)GaAs photoconductors for 1 550 nm laser operation[J]. Journal of Vacuum Science & Technology A, 2021,39(2):023407. doi:10.1116/6.0000773.
[15] ZHANG Lin, LI Chaofan, MA Cheng, et al. Effect of transition mechanism of photon-induced carriers on time jitter of GaAs photoconductive semiconductor switches[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6262-6265. doi: 10.1109/ TED.2021.3120974.
[16] MA Cheng, WU Meilin, WANG Wennan, et al. Electrical characterizations of 35 kV semi-insulating gallium arsenide photoconductive switch[J]. Photonics, 2021,8(9):385. doi:10.3390/photonics8090385.
[17] TIAN Liqiang,SUN Guangcheng,JING Dong,et al. Temperature characteristic of carrier scattering and dark resistivity of semi-insulating GaAs[J]. Journal of Applied Physics, 2021,130(19):195107. doi:10.1063/5.0071963.
[18] DONG Chengang, SHI Wei, XUE Fei, et al. Multi-energy valley scattering characteristics for an SI-GaAs-based terahertz photoconductive antenna in linear mode[J]. Applied Sciences, 2019,10(1):7. doi:10.3390/app10010007.
[19] XU Jianxing,LI Jinlun,WEI Sihang,et al. Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm[J]. Chinese Physics B, 2017,26(8):088702. doi:10.1088/1674-1056/26/8/088702.
[20] GLOBISCH B,DIETZ R J B,KOHLHAAS R B,et al. Fiber-coupled transceiver for terahertz reflection measurements with a 4.5 THz bandwidth[J]. Optics Letters, 2016,41(22):5262-5265. doi:10.1364/OL.41.005262.
[21] BROWN E R. A photoconductive model for superior GaAs THz photomixers[J]. Applied Physics Letters, 1999,75(6):769-771. doi:10.1063/1.124507.
[22] ROEHLE H,DIETZ R J B,HENSEL H J,et al. Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers[J]. Optics Express, 2010,18(3):2296-2301. doi:10.1364/OE.18.002296.