• Journal of Advanced Dielectrics
  • Vol. 11, Issue 2, 2150011 (2021)
S. G. Thakor*, V. A. Rana*, H. P. Vankar*, and T. R. Pandit*
Author Affiliations
  • Department of Physics, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
  • show less
    DOI: 10.1142/S2010135X21500119 Cite this Article
    S. G. Thakor, V. A. Rana, H. P. Vankar, T. R. Pandit. Dielectric spectroscopy and structural characterization of nano-filler-loaded epoxy resin[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150011 Copy Citation Text show less
    References

    [1] Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, H. Wu. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. A, Appl. Sci. Manuf., 118, 302(2019).

    [2] L. Fang, C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Adv., 4, 21010(2014).

    [3] M. Khan, A. A. Khurram, T. Li, T. Zhao, T. Subhani, I. H. Gul, Z. Ali, V. Patel. Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites. J. Mater. Sci. Technol., 34, 2424(2018).

    [4] Z. Wang, Y. Cheng, H. Wang, M. Yang, Y. Shao, X. Chen, T. Tanaka. Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength. J. Mater. Sci., 52, 4299(2017).

    [5] T. K. B. Sharmila, J. V. Antony, M. P. Jayakrishnan, P. M. S. Beegum, E. T. Thachil. Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater. Des., 90, 66(2016).

    [6] M. Donnay, S. Tzavalas, E. Logakis. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos. Sci. Technol., 110, 152(2015).

    [7] Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang, G.-Q. Lai. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 69, 467(2014).

    [8] J. Li, Z. Wu, C. Huang, L. Li. Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties. Compos. Sci. Technol., 104, 81(2014).

    [9] Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai, X.-W. Yuan. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos. B, Eng., 94, 102(2016).

    [10] T. Zhou, X. Wang, X. Liu, D. Xiong. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 48, 1171(2010).

    [11] R. K. Nayak, K. K. Mahato, B. C. Ray. Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos. A, Appl. Sci. Manuf., 90, 736(2016).

    [12] Y. K. Wang, L. Chen, Z. W. Xu. Effect of various nanoparticles on friction and wear properties of glass fiber reinforced epoxy composites. Adv. Mater. Res., 4, 1106(2011).

    [13] T. Tanaka. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul., 12, 914(2005).

    [14] P. Gonon, A. Boudefel. Electrical properties of epoxy/silver nanocomposites. J. Appl. Phys., 99, 24308(2006).

    [15] S. Singha, M. J. Thomas. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans. Dielectr. Electr. Insul., 15, 2(2008).

    [16] J. C. Fothergill, J. K. Nelson, M. Fu. Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers. Proc. 17th Annu. Meeting IEEE Lasers Electro-Optics Society, 406-409(2004).

    [17] S. Singha, M. J. Thomas. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 15, 12(2008).

    [18] I. Plesa. Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. J. Adv. Res. Phys., 1, 011011(2017).

    [19] B. Ramezanzadeh, M. M. Attar, M. Farzam. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J. Therm. Anal. Calorim., 103, 731(2010).

    [20] C.-K. Lam, H. Cheung, K. Lau, L. Zhou, M. Ho, D. Hui. Cluster size effect in hardness of nanoclay/epoxy composites. Compos. B, Eng., 36, 263(2005).

    [21] S. Thakor, V. A. Rana, H. P. Vankar. Dielectric spectroscopy of SiO2, ZnO-nanoparticle loaded epoxy resin in the frequency range of 20 Hz to 2 MHz. AIP Conf. Proc., 1837, 040025(2017).

    [22] S. G. Thakor, V. A. Rana, H. P. Vankar. Dielectric characterization of TiO2, Al2O3-nanoparticle loaded epoxy resin. AIP Conf. Proc., 1953, 050049(2018).

    [23] S. G. Thakor, V. A. Rana, H. P. Vankar. Dielectric spectroscopy of mixed nanoparticle loaded epoxy resin. Int. J. Sci. Res. Rev., 7, 426(2018).

    [24] D. M. Marquis, E. Guillaume, C. Chivas-Joly. Nanocomposites and Polymers with Analytical Methods, 261-284(2011).

    [25] B. Wetzel, F. Haupert, M. Q. Zhang. Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol., 63, 2055(2003).

    [26] C. B. Ng, L. S. Schadler, R. W. Siegel. Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct. Mater., 12, 507(1999).

    [27] M. N. Bin Zainal, Polymer layered silicates nanocomposite: PLS nanocomposite, Thesis, Universitat Politècnica de Catalunya (2015).

    [28] J. R. Ugal, M. E. Abd Al-Fattah. Preparation of epoxy nanocomposites and studying their mechanical, thermal and morphology properties. J. Kerbala Univ., 8, 94(2015).

    [29] Y. Sun, Z. Zhang, K. Moon, C. P. Wong. Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B, Polym. Phys., 42, 3849(2004).

    [30] V. A. Rana, K. N. Shah, H. P. Vankar, C. M. Trivedi. Dielectric spectroscopic study of the binary mixtures of amino silicone oil and methyl ethyl ketone in the frequency range of 100 Hz to 2 MHz at 298.15 K temperature. J. Mol. Liq., 271, 686(2018).

    [31] Keysight Technologies, Keysight E4980A/A Precision LCR Meter Keysight E4980A/AL, Data Sheet (2017).

    [32] Keysight Technologies, Keysight 16451B Dielectric Test Fixture, Operation and Service Manuel (2008).

    [33] Bureau of Indian Standards, IS 13360-5-11: Plastics — Methods of Testing, Part 5: Mechanical Properties, Section 11: Determination of Indentation Hardness of Plastics by Means of Durometer (Shore Hardness), Indian Standard, Petroleum, Coal, and Related Products, Plastics (1992).

    [34] Bureau of Indian Standards, IS 2036: Phenolic Laminated Sheets: Specification, Indian Standard (1995).

    [35] The Krishnan Group/Wilcox 132, University of Washington, Rigaku XRD-System Instruction Manual v4/19/03 (2019), http://depts.washington.edu/kkgroup/facilities/PDF/InstructionManualPDF.pdf.

    [36] V. A. Rana, T. R. Pandit. Dielectric spectroscopic and molecular dynamic study of aqueous solutions of paracetamol. J. Mol. Liq., 290, 111203(2019).

    [37] P. B. Macedo. The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys. Chem. Glasses, 13, 171(1972).

    [38] A. Kyritsis, P. Pissis, J. Grammatikakis. Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. B, Polym. Phys., 33, 1737(1995).

    [39] H. P. Vankar, V. A. Rana. Electrode polarization and ionic conduction relaxation in mixtures of 3-bromoanisole and 1-propanol in the frequency range of 20 Hz to 2 MHz at different temperatures. J. Mol. Liq., 254, 216(2018).

    [40] E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. P. Paranthaman, T. Aytuğ, S. Sathyamurthy, K. L. More, J. Li, A. Goyal. Electrical properties of epoxy resin based nano-composites. Nanotechnology, 18, 025703(2006).

    [41] D. Evans, S. J. Canfer. Advances in Cryogenic Engineering Materials, 361-368(2000).

    [42] Y. A. Tajima. Monitoring cure viscosity of epoxy composite. Polym. Compos., 3, 162(1982).

    [43] D. Kumar, A. Singh, P. S. Tarsikka. Interrelationship between viscosity and electrical properties for edible oils. J. Food Sci. Technol., 50, 549(2013).

    [44] R. J. Sengwa, S. Choudhary, P. Dhatarwal. Characterization of relaxation processes over static permittivity frequency regime and compliance of the Stokes-Einstein-Nernst relation in propylene carbonate. J. Mol. Liq., 225, 42(2017).

    [45] J. Kallweit. Relationship between viscosity and direct current conductivity in PVC. J. Polym. Sci. A-1, Polym. Chem., 4, 337(1966).

    [46] J. Świergiel, L. Bouteiller, J. Jadżyn. Compliance of the Stokes–Einstein model and breakdown of the Stokes–Einstein–Debye model for a urea-based supramolecular polymer of high viscosity. Soft Matter, 10, 8457(2014).

    [47] S. Suresh, P. Nisha, P. Saravanan, K. Jayamoorthy, S. Karthikeyan. Investigation of the thermal and dielectric behavior of epoxy nano-hybrids by using silane modified nano-ZnO. Silicon, 10, 1291(2018).

    [48] L. D. Zhang, H. F. Zhang, G. Z. Wang, C. M. Mo, Y. Zhang. Dielectric behaviour of nano-TiO2 bulks. Phys. Status Solidi, 157, 483(1996).

    [49] L. M. Levinson, H. R. Philipp. AC properties of metal-oxide varistors. J. Appl. Phys., 47, 1117(1976).

    [50] J. K. Nelson, J. C. Fothergill. Internal charge behaviour of nanocomposites. Nanotechnology, 15, 586(2004).

    [51] K. A. Mauritz. Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers: 4: Long-range ion transport. Macromolecules, 22, 4483(1989).

    [52] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, Y. Zhang. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett., 12, 1919(2012).

    [53] A. K. Jonscher. The ‘universal’ dielectric response. Nature, 267, 673(1977).

    [54] A. K. Jonscher. Dielectric relaxation in solids. J. Phys. D, Appl. Phys., 32, R57(1999).

    [55] Z. M. Elimat, M. S. Hamideen, K. I. Schulte, H. Wittich, A. De la Vega, M. Wichmann, S. Buschhorn. Dielectric properties of epoxy/short carbon fiber composites. J. Mater. Sci., 45, 5196(2010).

    [56] B. M. Greenhoe, M. K. Hassan, J. S. Wiggins, K. A. Mauritz. Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. J. Polym. Sci. B, Polym. Phys., 54, 1918(2016).

    [57] C. Zhang, R. Mason, G. Stevens. Preparation, characterization and dielectric properties of epoxy and polyethylene nanocomposites. IEEJ Trans. Fundam. Mater., 126, 1105(2006).

    [58] Y. Cao, P. C. Irwin. The electrical conduction in polyimide nanocomposites. Proc. 2003 Annu. Report Conf. Electrical Insulation and Dielectric Phenomena, 116-119(2003).

    [59] H. Alamri, I. M. Low. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des., 42, 214(2012).

    [60] M. Kozako, Y. Ohki, M. Kohtoh, S. Okabe, T. Tanaka. Preparation and various characteristics of epoxy/alumina nanocomposites. IEEJ Trans. Fundam. Mater., 126, 1121(2006).

    [61] M. Rajaei, N. K. Kim, S. Bickerton, D. Bhattacharyya. A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos. B, Eng., 165, 65(2019).

    [62] D. Bazrgari, F. Moztarzadeh, A. A. Sabbagh-Alvani, M. Rasoulianboroujeni, M. Tahriri, L. Tayebi. Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceram. Int., 44, 1220(2018).

    [63] S. Bal. Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater. Des., 31, 2406(2010).

    [64] S. Mosalman, S. Rashahmadi, R. Hasanzadeh. The effect of TiO2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites. Int. J. Eng. Trans. B, Appl., 30, 807(2017).

    [65] T. Ngo, M. Ton-That, S. V. Hoa, K. C. Cole. Reinforcing effect of organoclay in rubbery and glassy epoxy resins, part 1: Dispersion and properties. J. Appl. Polym. Sci., 107, 1154(2008).

    [66] J. Sanes, F. J. Carrión, M. D. Bermúdez. Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear, 268, 1295(2010).

    [67] B. P. Chang, H. M. Akil, R. B. M. Nasir, I. Bandara, S. Rajapakse. The effect of ZnO nanoparticles on the mechanical, tribological and antibacterial properties of ultra-high molecular weight polyethylene. J. Reinf. Plast. Compos., 33, 674(2014).

    [68] N. A. Ai, S. I. Hussein, M. K. Jawad, I. A. Al-Ajaj. Effect of Al2O3 and SiO2 nanopartical on wear, hardness and impact behavior of epoxy composites. Chem. Mater. Res., 7, 34(2015).

    [69] A. Takari, A. R. Ghasemi, M. Hamadanian, M. Sarafrazi, A. Najafidoust. Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites. Polym. Test., 93, 106890(2021).

    [70] T. A. Hassan, V. K. Rangari, F. Baker, S. Jeelani. Synthesis of hybrid SiC/SiO2 nanoparticles and their polymer nanocomposites. Int. J. Nanosci., 12, 1350008(2013).

    [71] F. L. Deepak, G. Gundiah, M. M. Seikh, A. Govindaraj, C. N. R. Rao. Crystalline silica nanowires. J. Mater. Res., 19, 2216(2004).

    [72] R. Nandanwar, P. Singh, F. Z. Haque. Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue. Chem. Sci. Int. J., 5, 1(2015).

    [73] S. Musić, N. Filipović-Vinceković, L. Sekovanić. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng., 28, 89(2011).

    [74] S.-H. Xue, H. Xie, H. Ping, Q.-C. Li, B.-L. Su, Z.-Y. Fu. Induced transformation of amorphous silica to cristobalite on bacterial surfaces. RSC Adv., 5, 71844(2015).

    [75] W. Liu, Y. Zhang. Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells. J. Mater. Chem. A, 2, 10244(2014).

    [76] K. Thamaphat, P. Limsuwan, B. Ngotawornchai. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. (Nat. Sci.), 42, 357(2008).

    [77] F. Scarpelli, T. Mastropietro, T. Poerio, N. Godbert. Titanium Dioxide: Material for a Sustainable Environment, 57-80(2018).

    [78] S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl. Sci., 10, 993(2020).

    [79] T. Zaki, K. I. Kabel, H. Hassan. Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method. Ceram. Int., 38, 2021(2012).

    [80] P. A. Prashanth, R. S. Raveendra, R. Hari Krishna, S. Ananda, N. P. Bhagya, B. M. Nagabhushana, K. Lingaraju, H. Raja Naika. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceram. Soc., 3, 345(2015).

    [81] F. R. Feret, D. Roy, C. Boulanger. Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction. Spectrochim. Acta B, At. Spectrosc., 55, 1051(2000).

    [82] T. Zaki, K. I. Kabel, H. Hassan. Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area. Ceram. Int., 38, 4861(2012).

    [83] P. Hosseinkhani, A. M. Zand, S. Imani, M. Rezayi, Z. S. Rezaei. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int. J. Nano Dimens., 1, 279(2011).

    [84] P. Bindu, S. Thomas. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys., 8, 123(2014).

    [85] M. Jabeen, M. A. Iqbal, R. V. Kumar, M. Ahmed, M. T. Javed. Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing. Chin. Phys. B, 23, 018504(2013).

    [86] R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. C. Bose. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun., 149, 1919(2009).

    [87] T. Theivasanthi and M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: An insight, Preprint, arXiv:1307.1091 [physics.chem-ph] (2013).

    [88] S. A. Bello, J. O. Agunsoye, J. A. Adebisi, S. B. Hassan. Effect of aluminium particles on mechanical and morphological properties of epoxy nanocomposites. APTEFF, 48, 25(2017).

    [89] R. Khan, M. R. Azhar, A. Anis, M. A. Alam, M. Boumaza, S. M. Al-Zahrani. Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study. J. Coat. Technol. Res., 13, 159(2016).

    [90] M. A. Alam, U. A. Samad, E.-S. M. Sherif, A. M. Poulose, J. A. Mohammed, N. Alharthi, S. M. Al-Zahrani. Influence of SiO2 content and exposure periods on the anticorrosion behavior of epoxy nanocomposite coatings. Coatings, 10, 118(2020).

    [91] A. Kumar, K. Kumar, P. K. Ghosh, K. L. Yadav. tMWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite. Ultrason. Sonochem., 41, 37(2018).

    [92] M. Eskandari, M. N. Liavali, R. Malekfar, P. Taboada. Investigation of optical properties of polycarbonate/TiO2/ZnO nanocomposite: Experimental and DFT calculations. J. Inorg. Organomet. Polym. Mater., 30, 5283(2020).

    [93] A. Mostafaei, F. Nasirpouri. Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. J. Coat. Technol. Res., 10, 679(2013).

    S. G. Thakor, V. A. Rana, H. P. Vankar, T. R. Pandit. Dielectric spectroscopy and structural characterization of nano-filler-loaded epoxy resin[J]. Journal of Advanced Dielectrics, 2021, 11(2): 2150011
    Download Citation