• Nano-Micro Letters
  • Vol. 15, Issue 1, 192 (2023)
Changsheng Ding1、*, Zhang Chen1, Chuanxiang Cao1, Yu Liu2, and Yanfeng Gao1、3、**
Author Affiliations
  • 1School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
  • 2Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 3Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 81000, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01162-x Cite this Article
    Changsheng Ding, Zhang Chen, Chuanxiang Cao, Yu Liu, Yanfeng Gao. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 192 Copy Citation Text show less
    References

    [1] W.A. Braff, J.M. Mueller, J.E. Trancik, Value of storage technologies for wind and solar energy. Nat. Clim. Change 6(10), 964–969 (2016).

    [2] O.J. Guerra, J.Z. Zhang, J. Eichman, P. Denholm, J. Kurtz et al., The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 13(7), 1909–1922 (2020).

    [3] K.C. Divya, J. Ostergaard, Battery energy storage technology for power systems-an overview. Electr. Power Syst. Res. 79(4), 511–520 (2009).

    [4] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011).

    [5] H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016).

    [6] Y.Q. Yang, S. Bremner, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energy Rev. 91, 109–125 (2018).

    [7] Y.G. Wang, J. Yi, Y.Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2(7), 830–840 (2012).

    [8] H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014).

    [9] J. Lamb, J.A. Jeevarajan, New developments in battery safety for large-scale systems. MRS Bull. 46(5), 395–401 (2021).

    [10] J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017).

    [11] K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1800079 (2018).

    [12] T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020).

    [13] P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8(17), 1703055 (2018).

    [14] J. Peng, W. Zhang, Q.N. Liu, J.Z. Wang, S.L. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34(15), 2108384 (2022).

    [15] A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson et al., Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015).

    [16] H. Hijazi, P. Desai, S. Mariyappan, Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization. Batter. Supercaps. 4(6), 881–896 (2021).

    [17] W. Tang, Y.S. Zhu, Y.Y. Hou, L.L. Liu, Y.P. Wu et al., Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 6(7), 2093–2104 (2013).

    [18] M. Liu, H. Ao, Y. Jin, Z. Hou, X. Zhang et al., Aqueous rechargeable sodium ion batteries: developments and prospects. Mater. Today Energy 17, 100432 (2020).

    [19] H.X. Yang, J.F. Qian, Recent development of aqueous sodium ion batteries and their key materials. J. Inorg. Mater. 28(11), 1165–1171 (2013).

    [20] D. Bin, F. Wang, A.G. Tamirat, L.M. Suo, Y.G. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018).

    [21] H. Ma, H.R. Zhang, M.Q. Xue, Research progress and practical challenges of aqueous sodium-ion batteries. Acta. Chim. Sin. 79(4), 388–405 (2021).

    [22] Z.G. Hou, X.Q. Zhang, X.N. Li, Y.C. Zhu, J.W. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017).

    [23] H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta et al., An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci. Rep. 7, 45048 (2017).

    [24] H. Gao, K.K. Tang, J. Xiao, X. Guo, W.H. Chen et al., Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries. J. Energy Chem. 69, 84–99 (2022).

    [25] Y.H. Shen, B. Liu, X.R. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021).

    [26] J.H. Huang, X.L. Dong, Z.W. Guo, Y.G. Wang, Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew. Chem. Int. Ed. 59(42), 18322–18333 (2020).

    [27] Y.N. Gao, H.Y. Yang, Y. Bai, C. Wu, Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A 9(19), 11472–11500 (2021).

    [28] Y.Y. Wang, D. Liu, M.L. Sun, J.P. Liu, Recent progress in electrode materials for aqueous sodium and potassium ion batteries. Mater. Chem. Front. 5(20), 7384–7402 (2021).

    [29] H.X. Li, W. Zhang, K.N. Sun, J. Guo, K. Yuan et al., Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv. Energy Mater. 11(25), 2100867 (2021).

    [30] Y.G. Cao, M.J. Xiao, X.Z. Sun, W.J. Dong, F.Q. Huang, Recent advances on high-capacity sodium manganese-based oxide cathodes for sodium-ion batteries. Chem. Eur. J. 29, e202202997 (2023).

    [31] A. Zhou, R. Chi, Y. Shi, X. Zhao, X. Li et al., Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Mater. Today Chem. 27, 101294 (2023).

    [32] Y.X. Chang, L.Z. Yu, X.X. Xing, Y.J. Guo, Z.Y. Xie et al., Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low-cost sodium ion batteries. Chem. Rec. 22(10), e202200122 (2022).

    [33] J. Chen, W.L. Xu, H.Y. Wang, X.H. Ren, F.Y. Zhan et al., Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. J. Mater. Chem. A 10(40), 21197–21250 (2022).

    [34] L.Y. Liu, Y.C. Wu, L. Huang, K.S. Liu, B. Duployer et al., Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 11(31), 2101287 (2021).

    [35] G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J.C. Huang et al., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017).

    [36] D.G.G.J.M. Tarascon, B. Wilkens, W.R. Mc Kinnon, P. Barboux, Chemical and electrochemical insertion of na into the spinel λ-MnO2 phase. Solid State Ionics 57, 113–120 (1992).

    [37] J.F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed et al., An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 213, 255–264 (2012).

    [38] M. Minakshi, Looking beyond lithium-ion technology - aqueous NaOH battery. Mater. Sci. Eng. B-Adv. 177(20), 1788–1792 (2012).

    [39] X.Q. Zhang, J.W. Chen, J.J. Ye, T.W. Zhang, Z.G. Hou, Revealing the competitive intercalation between Na+ and H+ into Na0.44MnO2 in aqueous sodium ion batteries. Adv. Energy Mater. 13(17), 2204413 (2023).

    [40] D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013).

    [41] H. Lim, J.H. Jung, Y.M. Park, H.N. Lee, H.J. Kim, High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-mwcnt core-shell nanowires and Na0.44MnO2 nanorods. Appl. Surf. Sci. 446, 131–138 (2018).

    [42] J.Z. Sun, Y. Dong, C.Y. Kong, Synthesis of Na2MnFe(CN)6 and its application as cathode material for aqueous rechargeable sodium-ion battery. J. New Mater. Electrochem. Syst. 19(3), 117–119 (2016).

    [43] H.C. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016).

    [44] Z.X. Liu, G. Pang, S.Y. Dong, Y.D. Zhang, C.H. Mi et al., An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system. Electrochim. Acta 311, 1–7 (2019).

    [45] M.S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri et al., Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 10(37), 2002077 (2020).

    [46] M.Q. Zhang, T.B. Dong, D.G. Li, K. Wang, X.Z. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na2MnFe(CN)6-zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35(13), 10860–10868 (2021).

    [47] H. Kanoh, W.P. Tang, Y. Makita, K. Ooi, Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13(25), 6845–6849 (1997).

    [48] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008).

    [49] Y. Zhang, C.L. Yuan, K. Ye, X. Jiang, J.L. Yin et al., An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in lambda-MnO2 positive electrode. Electrochim. Acta 148, 237–243 (2014).

    [50] M. Minakshi, D. Meyrick, Electrochemical energy storage device for securing future renewable energy. Electrochim. Acta 101, 66–70 (2013).

    [51] P.Y. Wang, X.B. Yan, Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 45, 142–181 (2022).

    [52] Y. Liu, Y. Qiao, W.X. Zhang, H. Wang, K.Y. Chen et al., Nanostructured alkali cation incorporated delta-MnO2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3(15), 7780–7785 (2015).

    [53] Y. Liu, Y. Qiao, W.X. Zhang, H.H. Xu, Z. Li et al., High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014).

    [54] Y. Liu, Y. Qiao, X.D. Lou, X.H. Zhang, W.X. Zhang et al., Hollow K0.27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl. Mater. Interfaces 8(23), 14564–14571 (2016).

    [55] X.Q. Shan, F.H. Guo, K. Page, J.C. Neuefeind, B. Ravel et al., Framework doping of ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite. Chem. Mater. 31(21), 8774–8786 (2019).

    [56] Q.L. Wei, X.Q. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14(1), 7 (2023).

    [57] J. Yu, X. Huang, Y. He, D. Tang, T. Huang, L. Liu, H. Wu, D.L. Peng, D. Zhao, K. Lan, Q. Wei, Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage. SmartMat (2023).

    [58] Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2(3), 434–442 (2023).

    [59] X.Q. Shan, D.S. Charles, W.Q. Xu, M. Feygenson, D. Su et al., Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage. Adv. Funct. Mater. 28(3), 1703266 (2018).

    [60] H. Usui, S. Suzuki, Y. Domi, H. Sakaguchi, Impacts of MnO2 crystal structures and Fe doping in those on photoelectrochemical charge-discharge properties of TiO2/MnO2 composite electrodes. ACS Sustain. Chem. Eng. 8(24), 9165–9173 (2020).

    [61] M. Ren, H.Y. Fang, C.C. Wang, H.X. Li, F.J. Li, Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy Fuels 34(11), 13412–13426 (2020).

    [62] N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu et al., High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017).

    [63] W.H. Zuo, Y. Yang, Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3(7), 709–720 (2022).

    [64] X.Q. Shan, F.H. Guo, D.S. Charles, Z. Lebens-Higgins, S.A. Razek et al., Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).

    [65] B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen et al., Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J. Power Sources 253, 98–103 (2014).

    [66] Y. Liu, B.H. Zhang, S.Y. Xiao, L.L. Liu, Z.B. Wen et al., A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116, 512–517 (2014).

    [67] X. Zhou, A.L. Zhao, Z.X. Chen, Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: a mini review. Electrochem. Commun. 122, 106897 (2021).

    [68] M.S. Chae, Y. Elias, D. Aurbach, Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem 8(5), 798–811 (2021).

    [69] B. Tekin, S. Sevinc, M. Morcrette, R. Demir-Cakan, A new sodium-based aqueous rechargeable battery system: the special case of Na0.44MnO2/dissolved sodium polysulfide. Energy Technol. 5(12), 2182–2188 (2017).

    [70] H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Electrochemical mechanism of Na0.44MnO2 in alkaline aqueous solution. Acta Phys. Chim. Sin. 36(5), 1905027 (2020).

    [71] T.J. Sun, C. Liu, J.Y. Wang, Q.S. Nian, Y.Z. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13(3), 676–683 (2020).

    [72] Z.W. Guo, Y. Zhao, Y.X. Ding, X.L. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017).

    [73] Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013).

    [74] W. Wu, A. Mohamed, J.F. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013).

    [75] B.D. Zhao, Q.Y. Wang, S. Zhang, C. Deng, Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J. Mater. Chem. A 3(22), 12089–12096 (2015).

    [76] B.D. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015).

    [77] G. Pang, P. Nie, C.Z. Yuan, L.F. Shen, X.G. Zhang et al., Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014).

    [78] L.L. Ke, J. Dong, B. Lin, T.T. Yu, H.F. Wang et al., A NaV3(PO4)3@C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale 9(12), 4183–4190 (2017).

    [79] C. Deng, S. Zhang, Z. Dong, Y. Shang, 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries. Nano Energy 4, 49–55 (2014).

    [80] T.T. Gu, M. Zhou, M.Y. Liu, K.L. Wang, S.J. Cheng et al., A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv. 6(58), 53319–53323 (2016).

    [81] Y. Wang, Z. Feng, D. Laul, W. Zhu, M. Provencher et al., Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery. J. Power Sources 374, 211–216 (2018).

    [82] G. Yee, S. Shanbhag, W. Wu, K. Carlisle, J. Chang et al., TiP2O7 exhibiting reversible interaction with sodium ions in aqueous electrolytes. Electrochem. commun. 86, 104–107 (2018).

    [83] X.Q. Zhang, Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu et al., Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4(3), 856–860 (2016).

    [84] L. Rakocevic, S. Strbac, J. Potocnik, M. Popovic, D. Jugovic et al., The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceram Int. 47(4), 4595–4603 (2021).

    [85] F.P. Gu, X.L. Yao, T.J. Sun, M.H. Fang, M. Shui et al., Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl. Phys. A Mater. 126(8), 658 (2020).

    [86] B.H. Zhang, Y. Liu, X.W. Wu, Y.Q. Yang, Z. Chang et al., An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50(10), 1209–1211 (2014).

    [87] S. Liu, T. Lei, Q.Q. Song, J. Zhu, C.B. Zhu, High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 14(9), 11425–11434 (2022).

    [88] Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu, Y.T. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3(4), 1400–1404 (2015).

    [89] W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162(6), A803–A808 (2015).

    [90] S. Maddukuri, A. Nimkar, M.S. Chae, T.R. Penki, S. Luski et al., Na0.44MnO2/polyimide aqueous Na-ion batteries for large energy storage applications. Front. Energy Res. 8, 615677 (2021).

    [91] H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Influence of NaOH concentration on sodium storage performance of Na0.44MnO2. Acta Phys. Chim. Sin. 37(3), 1907049 (2021).

    [92] L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun et al., Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017).

    [93] S.L. Bai, J.L. Song, Y.H. Wen, J. Cheng, G.P. Cao et al., Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv. 6(47), 40793–40798 (2016).

    [94] M.S. Chae, H.J. Kim, J. Lyoo, R. Attias, Y. Elias et al., Boosting tunnel-type manganese oxide cathodes by lithium nitrate for practical aqueous Na-ion batteries. ACS Appl. Energy Mater. 3(11), 10744–10751 (2020).

    [95] H.Z. Guo, Z.P. Shao, Y.X. Zhang, X.S. Cui, L.H. Mao et al., Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J. Colloid Interface Sci. 608, 1481–1488 (2022).

    [96] R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12(20), 22862–22872 (2020).

    [97] Z.G. Hou, X.Q. Zhang, J.W. Chen, Y.T. Qian, L.F. Chen et al., Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte. Adv. Energy Mater. 12(14), 2104053 (2022).

    [98] R. Chua, Y. Cai, Z.K. Kou, R. Satish, H. Ren et al., 13 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chem. Eng. J. 370, 742–748 (2019).

    [99] Y.S. Wang, L.Q. Mu, J. Liu, Z.Z. Yang, X.Q. Yu et al., A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015).

    [100] F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Highly stable Na-storage performance of Na0.5Mn0.5Ti05O2 microrods as cathode for aqueous sodium-ion batteries. J. Electroanal. Chem. 802, 22–26 (2017).

    [101] M. Jayakumar, K. Hemalatha, K. Ramesha, A.S. Prakash, Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices. Phys. Chem. Chem. Phys. 17(32), 20733–20740 (2015).

    [102] S. Boyd, R. Dhall, J.M. LeBeau, V. Augustyn, Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes. J. Mater. Chem. A 6(44), 22266–22276 (2018).

    [103] A.C. Nwanya, M.M. Ndipingwi, O. Anthony, F.I. Ezema, M. Maaza et al., Impedance studies of biosynthesized Na0.8Ni0.33Co0.33Mn0.33O2 applied in an aqueous sodium-ion battery. Int. J. Energy Res. 45(7), 11123–11134 (2021).

    [104] F.P. Gu, T.J. Sun, X.L. Yao, M. Shui, J. Shu, Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na0.44MnO2-CNT electrodes for aqueous sodium batteries. J. Phys. Chem. Solid 149, 109771 (2021).

    [105] F.X. Yin, Z.J. Liu, Y. Zhao, Y.T. Feng, Y.G. Zhang, Electrochemical properties of an na4mn9o18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery. Nanomaterials 7(9), 253 (2017).

    [106] A.D. Tevar, J.F. Whitacre, Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J. Electrochem. Soc. 157(7), A870–A875 (2010).

    [107] J.F. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12(3), 463–466 (2010).

    [108] Y.G. Zhang, Z. Bakenov, T.Z. Tan, J. Huang, Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn9O18 cathode and Zn metal anode. Polymers 10(8), 853 (2018).

    [109] G.H. Yuan, J.M. Xiang, H.F. Jin, Y.Z. Jin, L.Z. Wu et al., Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim. Acta 259, 647–654 (2018).

    [110] F.X. Yin, Z.J. Liu, S. Yang, Z.Z. Shan, Y. Zhao et al., Na4Mn9O18/carbon nanotube composite as a high electrochemical performance material for aqueous sodium-ion batteries. Nanoscale Res. Lett. 12, 569 (2017).

    [111] Z.Z. Shan, Y.S. He, T.Z. Tan, Y.G. Zhang, X. Wang, Preparation of Na4Mn9O18/carbon nanotube/reduced graphene oxide by spray drying as cathode materials for sodium ion batteries. Solid State Sci. 94, 77–84 (2019).

    [112] X.Q. Shan, D.S. Charles, Y.K. Lei, R.M. Qiao, G.F. Wang et al., Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016).

    [113] X.Q. Shan, F.H. Guo, W.Q. Xu, X.W. Teng, High purity Mn5O8 nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy 11(3), 383–400 (2017).

    [114] S. Qiu, Y.K. Xu, X.Y. Wu, X.L. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 5(2), 242–262 (2022).

    [115] B.X. Xie, B.Y. Sun, T.Y. Gao, Y.L. Ma, G.P. Yin et al., Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478 (2022).

    [116] J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018).

    [117] K. Shin, Y.P. Zheng, F. Zhang, S. Wu, Y.B. Tang, Facile ion-exchange strategy for Na+/K+ hybrid-ion batteries with superior rate capability and cycling performance. ACS Appl. Energy Mater. 3(7), 7030–7038 (2020).

    [118] S. Qiu, X.Y. Wu, M.Y. Wang, M. Lucero, Y. Wang et al., NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64, 103941 (2019).

    [119] J.S. Chen, C. Liu, Z.X. Yu, J.T. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 (2021).

    [120] Z.G. Hou, W.T. Mao, Z.X. Zhang, J.W. Chen, H.S. Ao et al., Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 15(6), 5072–5080 (2022).

    [121] M. Pasta, R.Y. Wang, R. Ruffo, R.M. Qiao, H.W. Lee et al., Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4(11), 4211–4223 (2016).

    [122] K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85(4), 179–185 (2017).

    [123] L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32(2), 1904427 (2020).

    [124] D. Reber, R. Grissa, M. Becker, R.S. Kuhnel, C. Battaglia, Anion selection criteria for water-in-salt electrolytes. Adv. Energy Mater. 11(5), 2002913 (2021).

    [125] M.A. Oliver-Tolentino, J. Vazquez-Samperio, S.N. Arellano-Ahumada, A. Guzman-Vargas, D. Ramirez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122(36), 20602–20610 (2018).

    [126] Y. Liu, C. Sun, Y. Li, H.B. Jin, Y.J. Zhao, Recent progress of Mn-based nasicon-type sodium ion cathodes. Energy Storage Mater. 57, 69–80 (2023).

    [127] Y. Yuan, Q.Y. Wei, S.K. Yang, X.Y. Zhang, M. Jia et al., Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 50, 760–782 (2022).

    [128] H. Zhang, X.P. Tan, H.H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14(11), 5788–5800 (2021).

    [129] L. Sharma, A. Manthiram, Polyanionic insertion hosts for aqueous rechargeable batteries. J. Mater. Chem. A 10(12), 6376–6396 (2022).

    [130] M. Minakshi, D. Meyrick, Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage. J. Alloys Compd. 555, 10–15 (2013).

    [131] Y. Zhou, Z.S. Zhang, Y. Zhao, J.F. Liu, K.H. Lam et al., Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chem. Eng. J. 425, 130459 (2021).

    [132] J.T. Wu, H.J. Liu, H.P. Bu, X. Zhang, H.L. Zhang et al., Manganese-based NASICON structured Na1+2xMnxTi2-x(PO4)3 as promising cathode in aqueous sodium ion battery. J. Alloys Compd. 934, 167872 (2023).

    [133] P.R. Kumar, A. Kheireddine, U. Nisar, R.A. Shakoor, R. Essehli et al., Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 429, 149–155 (2019).

    [134] B.W. Xie, R. Sakamoto, A. Kitajou, K. Nakamoto, L.W. Zhao et al., Cathode properties of Na3MnPO4CO3 prepared by the mechanical ball milling method for Na-ion batteries. Energies 12(23), 4534 (2019).

    [135] X.Y. Guo, Z.B. Wang, Z. Deng, B. Wang, X. Chen et al., Design principles for aqueous Na-ion battery cathodes. Chem. Mater. 32(16), 6875–6885 (2020).

    [136] K. Shiprath, H. Manjunatha, K.C.B. Naidu, A. Khan, A.M. Asiri et al., Na3MnPO4CO3 as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization. Mater. Chem. Phys. 248, 122952 (2020).

    [137] N. Nzimande, A. Haruna, P. Mwonga, B. Rasche, F. Cummings et al., Ceria-spiderweb nanosheets unlock the energy-storage properties in the “sleeping” triplite (Mn2(PO4)F). ACS Appl. Energy Mater. 4(11), 13085–13097 (2021).

    [138] Y.S. Wang, J. Liu, B.J. Lee, R.M. Qiao, Z.Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).

    [139] Y. Wang, F.Y. Zhou, Y.H. Li, P. Shi, S.Y. Xu et al., Na2[Mn3Vac0.1Ti0.4]O7: A new layered negative electrode material for aqueous Na-ion batteries. J. Alloys Compd. 918, 165765 (2022).

    [140] M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell et al., Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    [141] A. Firouzi, R.M. Qiao, S. Motallebi, C.W. Valencia, H.S. Israel et al., Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun. 9, 861 (2018).

    [142] J. Yun, F.A. Schiegg, Y.C. Liang, D. Scieszka, B. Garlyyev et al., Electrochemically formed NaxMn[Mn(CN)6] thin film anodes demonstrate sodium intercalation and deintercalation at extremely negative electrode potentials in aqueous media. ACS Appl. Energy Mater. 1(1), 123–128 (2018).

    [143] K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 3(4), 1800220 (2019).

    [144] S. Wheeler, I. Capone, S. Day, C. Tang, M. Pasta, Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate. Chem. Mater. 31(7), 2619–2626 (2019).

    [145] M.G. Wu, W. Ni, J. Hu, J.M. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11(1), 44 (2019).

    [146] P. Lei, K. Liu, X. Wan, D.X. Luo, X.D. Xiang, Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem. Commun. 55(4), 509–512 (2019).

    [147] Y. Shang, X.X. Li, J.J. Song, S.Z. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6(7), 1804–1818 (2020).

    Changsheng Ding, Zhang Chen, Chuanxiang Cao, Yu Liu, Yanfeng Gao. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 192
    Download Citation