• Photonics Research
  • Vol. 12, Issue 10, 2334 (2024)
Fangyuan Shi1, Yunfei Lv1, Zhanpeng Chen1, Xingzhi Wu1..., Zhengguo Xiao2,5, Zhongguo Li3, Quanying Wu1, Yinglin Song4,6 and Yu Fang1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
  • 2Department of Physics and Electronic Engineering, Tongren University, Tongren 554300, China
  • 3School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
  • 4School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 5e-mail: xiaozhengguo513@163.com
  • 6e-mail: ylsong@hit.edu.cn
  • show less
    DOI: 10.1364/PRJ.523278 Cite this Article Set citation alerts
    Fangyuan Shi, Yunfei Lv, Zhanpeng Chen, Xingzhi Wu, Zhengguo Xiao, Zhongguo Li, Quanying Wu, Yinglin Song, Yu Fang, "Broadband nonlinear refraction transients in C-doped GaN based on absorption spectroscopy," Photonics Res. 12, 2334 (2024) Copy Citation Text show less
    References

    [1] H. Ma, D. Li, N. Wu. Nonlinear all-optical modulator based on non-Hermitian PT symmetry. Photonics Res., 10, 980-988(2022).

    [2] Y. Hu, Z. Yang, T. Zhang. Nonlinear optical response and ultrafast all-optical modulation of Nb4C3. Opt. Express, 31, 19722-19732(2023).

    [3] Q. Yi, Y. Feng, D. Liu. Broadband nanosecond pulse generation modulated by zirconium triselenide nanoflakes. Opt. Mater. Express, 13, 997-1006(2023).

    [4] W. Xie, C. Xiang, L. Chang. Silicon-integrated nonlinear III-V photonics. Photonics Res., 10, 535-541(2022).

    [5] D. J. Wilson, K. Schneider, S. Hönl. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [6] D. M. Lukin, C. Dory, M. A. Guidry. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330-334(2020).

    [7] F. Baboux, G. Moody, S. Ducci. Nonlinear integrated quantum photonics with AlGaAs. Optica, 10, 917-931(2023).

    [8] Y. Zheng, C. Sun, B. Xiong. Integrated gallium nitride nonlinear photonics. Laser Photonics Rev., 16, 2100071(2022).

    [9] S. Zhou, H. Xu, B. Tang. High-power and reliable GaN-based vertical light-emitting diodes on 4-inch silicon substrate. Opt. Express, 27, A1506-A1516(2019).

    [10] Z. Xu, Z. Luo, X. Lin. 15.26 Gb/s Si-substrate GaN high-speed visible light photodetector with super-lattice structure. Opt. Express, 31, 33064-33076(2023).

    [11] T. Cheng, T. Fei, W. Zhang. Ellipsometric and first-principles study on temperature-dependent UV–Vis dielectric functions of GaN. Appl. Opt., 60, 6869-6877(2021).

    [12] N. Aggarwal, G. Gupta. Enlightening gallium nitride-based UV photodetectors. J. Mater. Chem. C, 8, 12348-12354(2020).

    [13] Y. Jiang, A. He, R. Zhao. Coexistence of photoelectric conversion and storage in van der Waals heterojunctions. Phys. Rev. Lett., 127, 217401(2021).

    [14] Y. Yang, W. Wang, Y. Zheng. Defect effect on the performance of nonpolar GaN-based ultraviolet photodetectors. Appl. Phys. Lett., 118, 053501(2021).

    [15] W. Wang, C. Chu, J. Che. Is a thin p-GaN layer possible for making high-efficiency AlGaN-based deep-ultraviolet light-emitting diodes?. Opt. Express, 29, 29651-29660(2021).

    [16] B. Wang, K. Fu, J. Fu. Miniature GaN optoelectronic temperature sensor. Opt. Lett., 48, 4209-4212(2023).

    [17] E. Stassen, M. Pu, E. Semenova. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Opt. Lett., 44, 1064-1067(2019).

    [18] K. Li, W. Fu, H. Choi. Chip-scale GaN integration. Prog. Quantum Electron., 70, 100247(2020).

    [19] X. Li, Y. Wang, K. Hane. GaN-based integrated photonics chip with suspended LED and waveguide. Opt. Commun., 415, 43-47(2018).

    [20] F. Shi, H. Zhang, C. Jiang. Collinear optical links based on a GaN-integrated chip for fiber-optic acoustic detection. Opt. Lett., 49, 169-172(2024).

    [21] Y. Wang, S. He, X. Gao. Enhanced optical nonlinearity in a silicon–organic hybrid slot waveguide for all-optical signal processing. Photonics Res., 10, 50-58(2022).

    [22] G. Grinblat, M. P. Nielsen, P. Dichtl. Ultrafast sub–30-fs all-optical switching based on gallium phosphide. Sci. Adv., 5, eaaw3262(2019).

    [23] S. Hua, W. Zhang. Multiphoton absorption and dispersive nonlinear refraction of ZnO in VIS-NIR bands. Opt. Laser Technol., 145, 107478(2022).

    [24] S. Hua, W. Zhang. Anisotropy of 2PA, 3PA, and Kerr effect in nonpolar ZnO. Opt. Lett., 46, 4065-4068(2021).

    [25] S. Hua, W. Zhang. Three-photon-induced free-carrier absorption in Ga-doped ZnO. Opt. Lett., 47, 273-276(2022).

    [26] L. Li, X. Guo, P. Ding. Ultrafast all-optical switching in the visible spectrum with 6H silicon carbide. ACS Photonics, 8, 2940-2946(2021).

    [27] F. Shi, Z. Li, X. Wu. Broadband optical nonlinearity and all-optical switching features in low-defect GaN. Opt. Express, 31, 32263-32272(2023).

    [28] M. A. A. Bakar, S. K. Alsaee, J. B. H. Ooi. GaN film optical nonlinearity: wavelength dependent refractive index for all-optical switching application. Opt. Laser Technol., 166, 109642(2023).

    [29] Y. Hu, J. You, M. Tong. Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [30] Z. Chai, X. Hu, F. Wang. Ultrafast all-optical switching. Adv. Opt. Mater., 5, 1600665(2017).

    [31] M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

    [32] B.-J. Huang, C.-T. Tsai, Y.-H. Lin. SiGeC waveguide for all-optical data switching. ACS Photonics, 5, 2251-2260(2018).

    [33] X. Jiang, S. Liu, W. Liang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev., 12, 1700229(2018).

    [34] P. Zhao, M. Reichert, D. J. Hagan. Dispersion of nondegenerate nonlinear refraction in semiconductors. Opt. Express, 24, 24907-24920(2016).

    [35] M. R. Ferdinandus, H. Hu, M. Reichert. Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction. Opt. Lett., 38, 3518-3521(2013).

    [36] S. Benis, N. Munera, S. Faryadras. Extremely large nondegenerate nonlinear index and phase shift in epsilon-near-zero materials. Opt. Mater. Express, 12, 3856-3871(2022).

    [37] M. Reichert, P. Zhao, J. M. Reed. Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases. Opt. Express, 23, 22224-22237(2015).

    [38] J. Xue, R. Wang, X. Chen. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 371, 636-640(2021).

    [39] J. Tong, Z. Song, D. H. Kim. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 364, 475-479(2019).

    [40] Y. Zhai, K. Wang, F. Zhang. Individual electron and hole mobilities in lead-halide perovskites revealed by noncontact methods. ACS Energy Lett., 5, 47-55(2019).

    [41] Y. Mao, H. Wang, I. Kislyakov. Nonlinear optical properties and ultrafast carrier dynamics of ultrathin ReSe2. Opt. Lett., 48, 6259-6262(2023).

    [42] C. Chen, N. Dong, J. Huang. Microscopic optical nonlinearities and transient carrier dynamics in indium selenide nanosheet. Opt. Express, 30, 17967-17979(2022).

    [43] E. Kioupakis, P. Rinke, A. Schleife. Free-carrier absorption in nitrides from first principles. Phys. Rev. B, 81, 241201(2010).

    [44] P. Ščajev, K. Jarašiūnas, Ü. Özgür. Anisotropy of free-carrier absorption and diffusivity in m-plane GaN. Appl. Phys. Lett., 100, 022112(2012).

    [45] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single-beam n2 measurements. Opt. Lett., 14, 955-957(1989).

    [46] I. Gamov, E. Richter, M. Weyers. Carbon doping of GaN: proof of the formation of electrically active tri-carbon defects. J. Appl. Phys., 127, 205701(2020).

    [47] K. Irmscher, I. Gamov, E. Nowak. Tri-carbon defects in carbon doped GaN. Appl. Phys. Lett., 113, 262101(2018).

    [48] J. L. Lyons, E. R. Glaser, M. E. Zvanut. Carbon complexes in highly C-doped GaN. Phys. Rev. B, 104, 075201(2021).

    [49] Z. Shen, X. Yang, S. Wu. Mechanism for self-compensation in heavily carbon doped GaN. AIP Adv., 13, 035026(2023).

    [50] J. Neugebauer, C. G. Van de Walle. Hydrogen in GaN: novel aspects of a common impurity. Phys. Rev. Lett., 75, 4452-4455(1995).

    [51] P. Martin, S. Guizard, P. Daguzan. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B, 55, 5799-5810(1997).

    [52] L. Guo, X. Xu, J. R. Salvador. Ultrafast carriers dynamics in filled-skutterudites. Appl. Phys. Lett., 106, 231902(2015).

    [53] M. Matsubara, E. Bellotti. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies. J. Appl. Phys., 121, 195701(2017).

    [54] S. Wu, X. Yang, H. Zhang. Unambiguous identification of carbon location on the N site in semi-insulating GaN. Phys. Rev. Lett., 121, 145505(2018).

    [55] Y. Fang, X. Wu, J. Yang. Carrier trapping and recombination at carbon defects in bulk GaN crystals grown by HVPE. Appl. Phys. Lett., 118, 112105(2021).

    [56] M. Reshchikov, M. Vorobiov, D. Demchenko. Two charge states of the C N acceptor in GaN: Evidence from photoluminescence. Phys. Rev. B, 98, 125207(2018).

    [57] J. Lyons, A. Janotti, C. Van de Walle. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B, 89, 035204(2014).

    Fangyuan Shi, Yunfei Lv, Zhanpeng Chen, Xingzhi Wu, Zhengguo Xiao, Zhongguo Li, Quanying Wu, Yinglin Song, Yu Fang, "Broadband nonlinear refraction transients in C-doped GaN based on absorption spectroscopy," Photonics Res. 12, 2334 (2024)
    Download Citation