• High Power Laser Science and Engineering
  • Vol. 7, Issue 1, 01000e11 (2019)
Mario Galletti1、2, Hugo Pires1, Victor Hariton1, Celso Paiva João1, Swen Künzel1, Marco Galimberti2, and Gonçalo Figueira1
Author Affiliations
  • 1GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
  • 2Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
  • show less
    DOI: 10.1017/hpl.2018.72 Cite this Article Set citation alerts
    Mario Galletti, Hugo Pires, Victor Hariton, Celso Paiva João, Swen Künzel, Marco Galimberti, Gonçalo Figueira. High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e11 Copy Citation Text show less
    Experimental setup in SHG experiment. $\unicode[STIX]{x1D706}/2,\unicode[STIX]{x1D706}/4$: waveplates; EC: pump energy control; FL: focusing lens; C: nonlinear crystal; CL: collimating lens; DM: dichroic mirror; FM: flip mirror; SM: spectrometer; CAM: camera; PM: power meter; SA: spectrum analyzer; PC: computer.
    Fig. 1. Experimental setup in SHG experiment. $\unicode[STIX]{x1D706}/2,\unicode[STIX]{x1D706}/4$: waveplates; EC: pump energy control; FL: focusing lens; C: nonlinear crystal; CL: collimating lens; DM: dichroic mirror; FM: flip mirror; SM: spectrometer; CAM: camera; PM: power meter; SA: spectrum analyzer; PC: computer.
    Comparison between pump and SHG spatial profile, respectively.
    Fig. 2. Comparison between pump and SHG spatial profile, respectively.
    Autocorrelation measurement of the pulse at 1030, 1054, 1000 and 980 nm for top left, top right, bottom left and bottom right, respectively.
    Fig. 3. Autocorrelation measurement of the pulse at 1030, 1054, 1000 and 980 nm for top left, top right, bottom left and bottom right, respectively.
    Input (red) and depleted (orange) signal spectra for 1030, 1054, 1000 and 980 nm pulses.
    Fig. 4. Input (red) and depleted (orange) signal spectra for 1030, 1054, 1000 and 980 nm pulses.
    SHG power versus input power at different wavelengths.
    Fig. 5. SHG power versus input power at different wavelengths.
    SHG efficiency versus input energy and average power for different wavelengths.
    Fig. 6. SHG efficiency versus input energy and average power for different wavelengths.
    Comparison (measured and simulated data) of the SHG efficiency as a function of the input intensity for different wavelengths.
    Fig. 7. Comparison (measured and simulated data) of the SHG efficiency as a function of the input intensity for different wavelengths.
    Experimental and simulated second harmonic generation spectrum of 1030 nm pumping beam.
    Fig. 8. Experimental and simulated second harmonic generation spectrum of 1030 nm pumping beam.
    SHG efficiency versus focal spot diameter at two different energies: 3.7 and 3.8 nJ for the same crystal length.
    Fig. 9. SHG efficiency versus focal spot diameter at two different energies: 3.7 and 3.8 nJ for the same crystal length.
    Second harmonic generation simulation determining the temporal length of the SHG pulse.
    Fig. 10. Second harmonic generation simulation determining the temporal length of the SHG pulse.
    $\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{AC}}$ (fs)$\unicode[STIX]{x1D70F}_{\text{pulse}}$ (fs)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ (fs)
    103016411614.3109
    105417412316.1101
    100022515912.4118
    980263186 9.3152
    Table 1. Autocorrelation and spectral experimental data. $\unicode[STIX]{x1D70F}_{\text{AC}}$ – FWHM of the autocorrelation trace, $\unicode[STIX]{x1D70F}_{\text{pulse}}$ – retrieved Gaussian FWHM pulse length, $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ – spectral FWHM bandwidth and $\unicode[STIX]{x1D70F}_{\text{pulse}}^{\text{TL}}$ – supported (transform-limited) pulse length.
    $\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ (nm)$\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ (fs)
    5152.98130.6
    5273.89104.5
    5003.16118.2
    4901.89186.5
    Table 2. SHG spectral experimental data. $\unicode[STIX]{x0394}\unicode[STIX]{x1D706}$ represents the FWHM bandwidth of the SHG spectrum and $\unicode[STIX]{x1D70F}_{\text{SHG}}^{\text{TL}}$ the retrieved FWHM of the supported SHG pulse temporal length assuming Gaussian shape.
    Mario Galletti, Hugo Pires, Victor Hariton, Celso Paiva João, Swen Künzel, Marco Galimberti, Gonçalo Figueira. High efficiency second harmonic generation of nanojoule-level femtosecond pulses in the visible based on BiBO[J]. High Power Laser Science and Engineering, 2019, 7(1): 01000e11
    Download Citation