• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 064401 (2021)
Wei Hong1,a), Shukai He1, Jian Teng1, Zhigang Deng1..., Zhimeng Zhang1, Feng Lu1, Bo Zhang1, Bin Zhu1, Zenghai Dai1, Bo Cui1, Yuchi Wu1, Dongxiao Liu1, Wei Qi1, Jinlong Jiao1, Faqiang Zhang1, Zuhua Yang1, Feng Zhang1, Bi Bi1, Xiaoming Zeng1, Kainan Zhou1, Yanlei Zuo1, Xiaojun Huang1, Na Xie1, Yi Guo1, Jingqin Su1, Dan Han1, Ying Mao1, Leifeng Cao1, Weimin Zhou1, Yuqiu Gu1, Feng Jing1, Baohan Zhang1, Hongbo Cai2, Minqing He2, Wudi Zheng2, Shaoping Zhu2, Wenjun Ma3, Dahui Wang3, Yinren Shou3, Xueqing Yan3, Bin Qiao4, Yi Zhang4, Congling Zhong4, Xiaohui Yuan5 and Wenqing Wei5|Show fewer author(s)
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang, Sichuan Province 621900, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100871, China
  • 3Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
  • 4School of Physics, Peking University, Beijing 100871, China
  • 5School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1063/5.0016019 Cite this Article
    Wei Hong, Shukai He, Jian Teng, Zhigang Deng, Zhimeng Zhang, Feng Lu, Bo Zhang, Bin Zhu, Zenghai Dai, Bo Cui, Yuchi Wu, Dongxiao Liu, Wei Qi, Jinlong Jiao, Faqiang Zhang, Zuhua Yang, Feng Zhang, Bi Bi, Xiaoming Zeng, Kainan Zhou, Yanlei Zuo, Xiaojun Huang, Na Xie, Yi Guo, Jingqin Su, Dan Han, Ying Mao, Leifeng Cao, Weimin Zhou, Yuqiu Gu, Feng Jing, Baohan Zhang, Hongbo Cai, Minqing He, Wudi Zheng, Shaoping Zhu, Wenjun Ma, Dahui Wang, Yinren Shou, Xueqing Yan, Bin Qiao, Yi Zhang, Congling Zhong, Xiaohui Yuan, Wenqing Wei. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401 Copy Citation Text show less
    References

    [1] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [2] C.Danson, D.Hillier, N.Hopps et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, E3(2015).

    [3] J.Bromage, C. N.Danson, C.Haefner et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, E54(2019).

    [4] H.Kiriyama, M.Nishiuchi, A. S.Pirozhkov et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett., 43, 2595(2018).

    [5] Y.Fukuda, M.Nishiuchi, A. S.Pirozhkov et al. Approaching the diffraction-limited, bandwidth-limited Petawatt. Opt. Express, 25, 20486(2017).

    [6] Z.Gan, W.Li, L.Yu et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).

    [7] K. N.Hatsagortsyan, K. N.Muller, A. D.Piazza. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177(2012).

    [8] H. S.Peng, W. Y.Zhang, X. M.Zhang et al. Progress in ICF programs at CAEP. Laser Part. Beams, 23, 205-209(2005).

    [9] S.Jingqin, Z.Kainan, Z.Qihua et al. The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams. Laser Phys. Lett., 15, 015301(2018).

    [10] X.Zeng, K.Zhou, Y.Zuo et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett., 42, 2014-2017(2017).

    [11] X.Huang, X.Zeng, K.Zhou et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility. Laser Phys., 28, 125301(2018).

    [12] S.Feldman, J.Kern, I.Kim et al. Simultaneous imaging of K-α radiation and coherent transition radiation from relativistic-intensity laser-irradiated solid target plasmas. High Energy Density Phys., 8, 60-65(2012).

    [13] T.Sato, K. A.Tanaka, J.Zheng et al. Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse. Phys. Rev. Lett., 92, 165001(2004).

    [14] Y.-T.Li, G.-Q.Liao, Y.-H.Zhang et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Phys. Rev. Lett., 116, 205003(2016).

    [15] J.Faure, Y.Glinec, A.Norlin et al. Observation of fine structures in laser-driven electron beams using coherent transition radiation. Phys. Rev. Lett., 98, 194801(2007).

    [16] T.Feurer, W.Theobald, L.Veisz et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients. Phys. Plasmas, 11, 3311(2004).

    [17] Y.He, W.Hong, J.Hua et al. Measuring fluence distribution of intense short laser based on the radiochromic effect. Opt. Lett., 46, 2795-2798(2021).

    [18] W. L.Kruer, M.Tabak, S. C.Wilks et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).

    [19] F. N.Beg, A. R.Bell, A. E.Dangor et al. A study of picosecond laser-solid interactions up to 1019 W cm−2. Phys. Plasmas, 4, 447-457(1997).

    [20] C. D.Chen, D. S.Hey, P. K.Patel et al. Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Phys. Plasmas, 16, 082705(2009).

    [21] H.Chen, W. L.Kruer, S. C.Wilks et al. Hot electron energy distributions from ultraintense laser solid interactions. Phys. Plasmas, 16, 020705(2009).

    [22] F. N.Beg, M. G.Haines, M. S.Wei et al. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).

    [23] T.Cowan, A.Debus, T.Kluge et al. Electron temperature scaling in laser interaction with solids. Phys. Rev. Lett., 107, 205003(2011).

    [24] M.Sherlock. Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions. Phys. Plasmas, 16, 103101(2009).

    [25] A. J.Kemp, Y.Sentoku, M.Tabak. Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. E, 79, 066406(2009).

    [26] H.Daido, M.Nishiuchi, A. S.Pirozhkov. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).

    [27] M.Borghesi, A.Macchi, M.Passoni. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).

    [28] T. E.Cowan, A. B.Langdon, S. C.Wilks et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).

    [29] S. P.Hatchett, M. H.Key, R. A.Snavely et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).

    [30] P.Mora. Thin-foil expansion into a vacuum. Phys. Rev. E, 72, 056401(2005).

    [31] S.Kar, A. P. L.Robinson, M.Zepf et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021(2008).

    [32] M.Borghesi, S. V.Bulanov, T.Esirkepov et al. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003(2004).

    [33] R. J.Gray, A.Higginson, M.King et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [34] G. E.Cochran, L.Obst, P. L.Poole et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime. New J. Phys., 20, 013019(2018).

    [35] A. A.Andreev, D.Doria, R.Prasad et al. Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses. Appl. Phys. Lett., 99, 121504(2011).

    [36] D.Doria, R.Prasad, S.Ter-Avetisyan et al. Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses. Nucl. Instrum. Methods Phys. Res., Sect. A, 653, 113-115(2011).

    [37] J.Fuchs, S.Gaillard, N.Renard-Le Galloudec et al. Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns. Rev. Sci. Instrum., 78, 013304(2007).

    [38] G. A.Becker, S.Keppler, S.Tietze et al. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime. Plasma Phys. Controlled Fusion, 60, 055010(2018).

    [39] A. J.Mackinnon, P. K.Patel, Y.Sentoku et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett., 88, 215006(2002).

    [40] D.Kumar, S.Singh, M.Smid et al. Alignment of solid targets under extreme tight focus conditions generated by an ellipsoidal plasma mirror. Matter Radiat. Extremes, 4, 024402(2019).

    [41] S.Buffechoux, A.Kon, M.Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).

    Wei Hong, Shukai He, Jian Teng, Zhigang Deng, Zhimeng Zhang, Feng Lu, Bo Zhang, Bin Zhu, Zenghai Dai, Bo Cui, Yuchi Wu, Dongxiao Liu, Wei Qi, Jinlong Jiao, Faqiang Zhang, Zuhua Yang, Feng Zhang, Bi Bi, Xiaoming Zeng, Kainan Zhou, Yanlei Zuo, Xiaojun Huang, Na Xie, Yi Guo, Jingqin Su, Dan Han, Ying Mao, Leifeng Cao, Weimin Zhou, Yuqiu Gu, Feng Jing, Baohan Zhang, Hongbo Cai, Minqing He, Wudi Zheng, Shaoping Zhu, Wenjun Ma, Dahui Wang, Yinren Shou, Xueqing Yan, Bin Qiao, Yi Zhang, Congling Zhong, Xiaohui Yuan, Wenqing Wei. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401
    Download Citation