[1] M SCIAMANNA, K A SHORE. Physics and applications of laser diode chaos. Nature Photonics, 9, 151-162(2015).
[2] A UCHIDA, K AMANO, M INOUE et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2, 728-732(2008).
[3] I REIDLER, Y AVIAD, M ROSENBLUH et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Physical Review Letters, 103, 024102(2009).
[4] Hua GAO, Anbang WANG, Longsheng WANG et al. 0.75 gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of fabry-perot lasers. Light-Science & Applications, 10, 172(2021).
[5] Weidong SHAO, Yudi FU, Mengfan CHENG et al. Chaos synchronization based on hybrid entropy sources and applications to secure communication. IEEE Photonics Technology Letters, 33, 1038-1041(2021).
[6] F Y LIN, J M LIU. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics, 40, 815-820(2004).
[7] C H TSENG, S K HWANG. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Optics Letters, 45, 3777-3780(2020).
[8] Limeng ZHANG, Biwei PAN, Guangchan CHEN et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. Applied Optics, 56, 1253-1256(2017).
[9] Mengwen LI, Xiaocheng ZHANG, Jianzhong ZHANG et al. Long-range and high-precision fault measurement based on hybrid integrated chaotic laser. IEEE Photonics Technology Letters, 31, 1389-1392(2019).
[10] Junji OHTSUBO. Semiconductor lasers stability, instability and chaos (4th ed)(2017).
[11] Z F JIANG, Z M WU, E JAYAPRASATH et al. Nonlinear dynamics of exclusive excited-state emission quantum dot lasers under optical injection. Photonics, 6, 6020058(2019).
[12] T B SIMPSON. Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection. Optics Communications, 215, 135-151(2003).
[13] F Y LIN, S Y TU, C C HUANG et al. Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection. IEEE Journal of Selected Topics in Quantum Electronics, 15, 604-611(2009).
[14] Lijun QIAO, Tianshuang LV, Yong XU et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Optics Letters, 44, 5394-5397(2019).
[15] D LENSTRA, B H VERBEEK, A J DENBOEF. Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE Journal of Quantum Electronics, 21, 674-679(1985).
[16] J MORK, J MARK, B TROMBORG. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Physical Review Letters, 65, 1999-2002(1990).
[17] S TANG, J M LIU. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE Journal of Quantum Electronics, 37, 329-336(2001).
[18] A ARGYRIS, M HAMACHER, K E CHLOUVERAKIS et al. Photonic integrated device for chaos applications in communications. Physical Review Letters, 100, 194101(2008).
[19] S SUNADA, T HARAYAMA, K ARAI et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Optics Express, 19, 5713-5724(2011).
[20] J G WU, L J ZHAO, Z M WU et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Optics Express, 21, 23358-23364(2013).
[21] V Z TRONCIU, C MIRASSO, P COLET et al. Chaos generation and synchronization using an integrated source with an air gap. IEEE Journal of Quantum Electronics, 46, 1840-1846(2010).
[22] Mengmeng CHAI, Lijun QIAO, Shuhui LI et al. Wavelength-tunable monolithically integrated chaotic semiconductor laser. Journal of Lightwave Technology, 40, 5952-5957(2022).
[23] Mingjiang ZHANG, Yuhang XU, Tong ZHAO et al. A hybrid integrated short-external-cavity chaotic semiconductor laser. IEEE Photonics Technology Letters, 29, 1911-1914(2017).
[24] M VIRTE, K PANAJOTOV, H THIENPONT et al. Deterministic polarization chaos from a laser diode. Nature Photonics, 7, 60-65(2013).
[25] K J VAHALA. Optical microcavities. Nature, 424, 839-846(2003).
[26] Lina HE, S K OZDEMIR, Lan YANG. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 7, 60-82(2013).
[27] Zhixiong XIAO, Yongzhen HUANG, Yuede YANG et al. Single-mode unidirectional-emission circular-side hexagonal resonator microlasers. Optics Letters, 42, 1309-1312(2017).
[28] Heng LONG, Yongzhen HUANG, Yuede YANG et al. High-speed direct-modulated unidirectional emission square microlasers. Journal of Lightwave Technology, 33, 787-794(2015).
[29] Heng LONG, Yongzhen HUANG, Xiuwen MA et al. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Optics Letters, 40, 3548-3551(2015).
[30] Haizhong WENG, Osamu WADA, Junyuan HAN et al. Sub-THz wave generation based on a dual wavelength microsquare laser. Electronics Letters, 53, 939-941(2017).
[31] Jiliang WU, Xiaohui GUO, Yadong JIAO et al. Octave-spanning optical frequency comb generation using a directly-modulated microlaser source. Journal of Lightwave Technology, 40, 5575-5582(2022).
[32] Ting WANG, Jiliang WU, Xucheng ZHANG et al. Octave-spanning frequency comb generation based on a dual-mode microcavity laser. Photonics Research, 10, 2107-2114(2022).
[33] Yongzhen HUANG, Shijiang WANG, Yuede YANG et al. Optical bistability in inp/gainasp equilateral-triangle-resonator microlasers. Optics Letters, 34, 1852-1854(2009).
[34] Jiandong LIN, Yongzhen HUANG, Yuede YANG et al. Optical bistability in gainasp/inp coupled-circular resonator microlasers. Optics Letters, 36, 3515-3517(2011).
[35] Jiancheng LI, Yongtao HUANG, Chunguang MA et al. Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser. Optics Letters, 48, 4953-4956(2023).
[36] Jinlong XIAO, Chunguang MA, Zhixiong XIAO et al. Random bit generation in dual transverse mode microlaser without optical injection or feedback, 171-172(2018).
[37] Chunguang MA, Jinlong XIAO, Zhixiong XIAO et al. Chaotic microlasers caused by internal mode interaction for random number generation. Light-Science & Applications, 11, 187(2022).
[38] Jiancheng LI, Jinlong XIAO, Yuede YANG et al. Nonlinear dynamics in a circular-sided square microcavity laser. Photonics Research, 11, A97-A106(2023).
[39] Jiancheng LI, Jinlong XIAO, Yuede YANG et al. Random bit generation based on a self-chaotic microlaser with enhanced chaotic bandwidth. Nanophotonics, 12, 4109-4116(2023).
[40] Yunxiao DONG, Jiancheng LI, Yali LI et al. Feedback insensitivity in a self-chaotic microcavity laser. Optics Letters, 49, 69-72(2024).
[41] Mengmeng CHAI, Lijun QIAO, Mingjiang ZHANG et al. Progress in photonic integrated chaotic semiconductor laser. Infrared and Laser Engineering, 49, 20201066(2020).
[42] Shangqi KUANG, Xiangshuai GUO, Yuling FENG et al. Research progress of optical chaos in semiconductor laser systems. Chinese Optics, 14, 1133-1145(2021).
[43] Mingjiang ZHANG, Yuncai WANG. Review on chaotic lasers and measurement applications. Journal of Lightwave Technology, 39, 3711-3723(2021).
[44] Wei FENG, Yu MAO, Yue MENG et al. Progress in the study of nonlinear dynamic characteristics based on quantum cascade lasers. Journal of Infrared and Millimeter Waves, 42, 763-771(2023).
[45] Jiachen LIU, Yongzhen HUANG, Youzeng HAO et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited). Acta Photonica Sinica, 51, 0251205(2022).
[46] Youzeng HAO, Chunguang MA, Zhengzheng SHEN et al. Comparison of single- and dual-mode lasing states of a hybrid-cavity laser under optical feedback. Optics Letters, 46, 2115-2118(2021).
[47] Chunguang MA, Jiliang WU, Jinlong XIAO et al. Wideband chaos generation based on a dual-mode microsquare laser with optical feedback. Chinese Optics Letters, 19, 111401(2021).
[48] Yali LI, Chunguang MA, Jinlong XIAO et al. Wideband chaotic tri-mode microlasers with optical feedback. Optics Express, 30, 2122-2130(2022).
[49] Ting WANG, Jiliang WU, Chunguang MA et al. Dual-mode square microcavity lasers with a tunable wavelength interval (invited). Acta Photonica Sinica, 51, 0251202(2022).
[50] Yixuan WANG, Zhiwei JIA, Zhensen GAO et al. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Optics Express, 28, 18507-18515(2020).
[51] Yixuan WANG, Daming WANG, Zhiwei JIA et al. Generation of wideband chaos without time delay signature using the microlaser with dispersive optical feedback. Jouranl of Shenzhen University (Science and Engineering), 38, 252-257(2021).
[52] S TERRIEN, B KRAUSKOPF, N G R BRODERICK et al. Merging and disconnecting resonance tongues in a pulsing excitable microlaser with delayed optical feedback. Chaos, 33, 023142(2023).
[53] F ALBERT, C HOPFMANN, S REITZENSTEIN et al. Observing chaos for quantum-dot microlasers with external feedback. Nature Communications, 2, 366(2011).
[54] S HOLZINGER, C REDLICH, B LINGNAU et al. Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. Optics Express, 26, 22457-22470(2018).
[55] Lingxiu ZOU, Bowen LIU, Xiaomeng LV et al. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 106, 191107(2015).
[56] Min TANG, Yuede YANG, Jiliang WU et al. Dynamical characteristics of twin-microring lasers with mutual optical injection. Journal of Lightwave Technology, 39, 1444-1450(2021).
[57] Jiancheng LI, Yali LI, Yunxiao DONG et al. 400 Gb/s physical random number generation based on deformed square self-chaotic lasers. Chinese Optics Letters, 21, 061901(2023).
[58] R ANDREW, S JUAN, N JAMES et al(2010).
[59] Jiancheng LI, Yunxiao DONG, Binjuan LEI et al. Optical time domain reflectometry based on a self-chaotic circular-sided microcavity laser. Applied Optics, 63, 154-158(2024).
[60] Zhihong HU, Jingguo ZHU, Chenghao JIANG et al. Improving the ranging performance of chaos lidar. Applied Optics, 62, 3598-3605(2023).