• Photonics Research
  • Vol. 8, Issue 3, 296 (2020)
Byung Kwon Park1、2, Min Ki Woo1, Yong-Su Kim1、2, Young-Wook Cho1, Sung Moon1, and Sang-Wook Han1、2、*
Author Affiliations
  • 1Center for Quantum Information, Korea Institute of Science and Technology, Seoul 02792, South Korea
  • 2Division of Nano and Information Technology, Korea Institute of Science and Technology School, Korea University of Science and Technology, Seoul 02792, South Korea
  • show less
    DOI: 10.1364/PRJ.377101 Cite this Article Set citation alerts
    Byung Kwon Park, Min Ki Woo, Yong-Su Kim, Young-Wook Cho, Sung Moon, Sang-Wook Han. User-independent optical path length compensation scheme with sub-nanosecond timing resolution for a 1 × N quantum key distribution network system[J]. Photonics Research, 2020, 8(3): 296 Copy Citation Text show less
    References

    [1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci., 560, 7-11(2014).

    [2] A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661-663(1991).

    [3] C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68, 3121-3124(1992).

    [4] A. Muller, H. Zbinden, N. Gisin. Quantum cryptography over 23  km in installed under-lake telecom fibre. Europhys. Lett., 33, 335-339(1996).

    [5] I. Choi, R. J. Young, P. D. Townsend. Quantum information to the home. New J. Phys., 13, 063039(2011).

    [6] F. Gao, S. J. Qin, W. Huang, Q. Y. Wen. Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China: Phys. Mech. Astron., 62, 070301(2019).

    [7] S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Field test of wavelength-saving quantum key distribution network. Opt. Lett., 35, 2454-2456(2010).

    [8] T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan. Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 18, 27217-27225(2010).

    [9] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express, 19, 10387-10409(2011).

    [10] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).

    [11] D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, G. Zeng. Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett., 41, 3511-3514(2016).

    [12] Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, H. Guo. Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol., 4, 035006(2019).

    [13] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C. Z. Peng, J.-Y. Wang, A. Zeilinger, J.-W. Pan. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 120, 030501(2018).

    [14] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, J.-W. Pan. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X, 6, 011024(2016).

    [15] P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Allééaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, P. Painchault. Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express, 20, 14030-14041(2012).

    [16] K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, A. J. Shields. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X, 2, 041010(2012).

    [17] K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, A. J. Shields. Quantum key distribution for 10  Gb/s dense wavelength division multiplexing networks. Appl. Phys. Lett., 104, 051123(2014).

    [18] P. D. Townsend, S. J. D. Phoenix, K. J. Blow, S. M. Barnett. Design of quantum cryptography systems for passive optical networks. Electron. Lett., 30, 1875-1877(1994).

    [19] P. D. Townsend. Quantum cryptography on multiuser optical fibre networks. Nature, 385, 47-49(1997).

    [20] P. Toliver, R. J. Runser, T. E. Chapuran, J. L. Jackel, T. C. Banwell, M. S. Goodman, R. J. Hughes, C. G. Peterson, D. Derkacs, J. E. Nordholt, L. Mercer, S. McNown, A. Goldman, J. Blake. Experimental investigation of quantum key distribution through transparent optical switch elements. IEEE Photon. Technol. Lett., 15, 1669-1671(2003).

    [21] L. Ma, A. Mink, H. Xu, O. Slattery, X. Tang. Experimental demonstration of an active quantum key distribution network with over Gbps clock synchronization. IEEE Comm. Lett., 11, 1019-1021(2007).

    [22] G. Brassard, F. Bussieres, N. Godbout, S. Lacroix. Multiuser quantum key distribution using wavelength division multiplexing. Proc. SPIE, 5260, 149-153(2003).

    [23] T. Zhang, X. F. Mo, Z. F. Han, G. C. Guo. Extensible router for a quantum key distribution network. Phys. Lett. A, 372, 3957-3962(2008).

    [24] W. Chen, Z. F. Han, T. Zhang, H. Wen, Z. Q. Yin, F. X. Xu, Q. L. Wu, Y. Liu, Y. Zhang, X. F. Mo, Y. Z. Gui, G. Wei, G. C. Guo. Field experiment on a star type metropolitan quantum key distribution network. IEEE Photon. Tech. Lett., 21, 575-577(2009).

    [25] A. Ciurana, J. Martinez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, V. Martin. Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express, 22, 1576-1593(2014).

    [26] T. Nishioka, H. Ishizuka, T. Hasegawa, J. Abe. Circular type quantum key distribution. IEEE Photon. Technol. Lett., 14, 576-578(2002).

    [27] P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, B. C. Wang. Comparison of four multi-user quantum key distribution schemes over passive optical networks. J. Lightwave Technol., 23, 268-275(2005).

    [28] E. Donkor. Experimental auto-compensating multi-user quantum key distribution network using a wavelength-addressed bus line architecture. Proc. SPIE, 8397, 839704(2012).

    [29] A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin. Plug and play systems for quantum cryptography. Appl. Phys. Lett., 70, 793-795(1997).

    [30] G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden. Automated ‘plug and play’ quantum key distribution. Electron. Lett., 34, 2116-2117(1998).

    [31] B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, S. Moon. QKD system with fast active optical path length compensation. Sci. China: Phys. Mech. Astron., 60, 060311(2017).

    [32] W.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett., 91, 057901(2003).

    [33] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).

    [34] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [35] X. Ma, B. Qi, Y. Zhao, H.-K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 72, 012326(2005).

    Byung Kwon Park, Min Ki Woo, Yong-Su Kim, Young-Wook Cho, Sung Moon, Sang-Wook Han. User-independent optical path length compensation scheme with sub-nanosecond timing resolution for a 1 × N quantum key distribution network system[J]. Photonics Research, 2020, 8(3): 296
    Download Citation