• Semiconductor Optoelectronics
  • Vol. 43, Issue 1, 110 (2022)
PAN Wu, LIU Bowen*, MA Yong, XIAO Huiyun, and YANG Longliang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2021081602 Cite this Article
    PAN Wu, LIU Bowen, MA Yong, XIAO Huiyun, YANG Longliang. Study on Polarization-controlled Terahertz Photoconductive Antenna[J]. Semiconductor Optoelectronics, 2022, 43(1): 110 Copy Citation Text show less
    References

    [1] Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Opt. Eng., 2017, 56(1): 010901.

    [2] Bashirpour M, Forouzmehr M, Hosseininejad S E, et al. Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods[J]. Sci. Rep., 2019, 9(1): 1-8.

    [4] Prajapati, Jitendra, Bharadwaj, et al. Circuit modeling and performance analysis of photoconductive antenna[J]. Opt. Commun., 2017, 394: 69-79.

    [5] Castro Camus E, Johnston M B. Extraction of the anisotropic dielectric properties of materials from polarization-resolved terahertz time-domain spectra[J]. J. Opt. A: Pure Appl. Opt., 2009, 11(10): 105206.

    [6] Bulgarevich Dmitry S, Watanabe Makoto, Shiwa Mitsuharu, et al. Polarization-variable emitter for terahertz time-domain spectroscopy[J]. Opt. Express, 2016, 24(24): 27160-27165.

    [7] Hirota Y, Hattori R, Tani M, et al. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna[J]. Opt. Express, 2006, 14(10): 4486-4493.

    [8] Bulgarevich D S, Watanabe M, Shiwa M, et al. Polarization-variable emitter for terahertz time-domain spectroscopy[J]. Opt. Express, 2016, 24(24): 27160-27165.

    [9] Bashirpour M, Ghorbani S, Kolahdouz M, et al. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure[J]. RSC Adv., 2017, 7(83): 53010-53017.

    [10] Namiot V A, Shchurova L Y. On the generation of electromagnetic waves in the terahertz frequency range[J]. Phys. Lett. A, 2011, 375(28/29): 2759-2766.

    [11] Criollo C A, vila A. Simulation of photoconductive antennas for terahertz radiation[J]. Ing. Invest, 2015, 35(1): 60-64.

    [12] Zou X, Dong J, Zhang K, et al. The piezotronic effect on carrier recombination processes in InGaN/GaN multiple quantum wells microwire[J]. Nano Energy, 2021, 87: 106145.

    [13] Saint-André S, Rodríguez D, Perillo P, et al. TiO2 nanotubes antireflection coating design for GaAs solar cells[J]. Sol. Energy Mater. Sol. Cells, 2021, 230: 111201.

    [14] Prajapati J, Bharadwaj M, Chatterjee A, et al. Circuit modeling and performance analysis of photoconductive antenna[J]. Opt. Commun., 2017, 394: 69-79.

    [15] Dong C, Shi W, Xue F, et al. Multi-energy valley scattering characteristics for a Si-GaAs-Based terahertz photoconductive antenna in linear mode[J]. Appl. Sci., 2020, 10(1): 7.

    [16] Miyamaru F, Saito Y, Yamamoto K, et al. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas[J]. Appl. Phys. Lett., 2010, 96(21): 211104.

    PAN Wu, LIU Bowen, MA Yong, XIAO Huiyun, YANG Longliang. Study on Polarization-controlled Terahertz Photoconductive Antenna[J]. Semiconductor Optoelectronics, 2022, 43(1): 110
    Download Citation