• Photonics Research
  • Vol. 7, Issue 5, B7 (2019)
Christian Kuhn1、*, Luca Sulmoni1, Martin Guttmann1, Johannes Glaab2, Norman Susilo1, Tim Wernicke1, Markus Weyers2, and Michael Kneissl1、2
Author Affiliations
  • 1Technische Universität Berlin, Institute of Solid State Physics, Hardenbergstr. 36, EW6-1, 10623 Berlin, Germany
  • 2Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.7.0000B7 Cite this Article Set citation alerts
    Christian Kuhn, Luca Sulmoni, Martin Guttmann, Johannes Glaab, Norman Susilo, Tim Wernicke, Markus Weyers, Michael Kneissl. MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs[J]. Photonics Research, 2019, 7(5): B7 Copy Citation Text show less
    References

    [1] M. Kneissl, J. Rass. III-Nitride Ultraviolet Emitters: Technology and Applications(2016).

    [2] N. Susilo, J. Enslin, L. Sulmoni, M. Guttmann, U. Zeimer, T. Wernicke, M. Weyers, M. Kneissl. Effect of the GaN:Mg contact layer on the light-output and current-voltage characteristic of UVB LEDs. Phys. Status Solidi A, 215, 1700643(2017).

    [3] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency. Appl. Phys. Express, 10, 031002(2017).

    [4] L. Esaki. New phenomenon in narrow germanium p-n junctions. Phys. Rev., 109, 603-604(1958).

    [5] S. Rajan, T. Takeuchi. III-nitride tunnel junctions and their applications. III-Nitride Based Light Emitting Diodes and Applications, 209-238(2017).

    [6] M. Malinverni, C. Tardy, M. Rossetti, A. Castiglia, M. Duelk, C. Velez, D. Martin, N. Grandjean. InGaN laser diode with metal-free laser ridge using n+-GaN contact layers. Appl. Phys. Express, 9, 061004(2016).

    [7] M. Malinverni, D. Martin, N. Grandjean. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction. Appl. Phys. Lett., 107, 051107(2015).

    [8] S. M. Sadaf, Y.-H. Ra, H. P. T. Nguyen, M. Djavid, Z. Mi. Alternating-current InGaN/GaN tunnel junction nanowire white light emitting diodes. Nano Lett., 15, 6696-6701(2015).

    [9] E. C. Young, B. P. Yonkee, F. Wu, S. H. Oh, S. P. DenBaars, S. Nakamura, J. S. Speck. Hybrid tunnel junction contacts to III-nitride light emitting diodes. Appl. Phys. Express, 9, 022102(2016).

    [10] C. Skierbiszewski, G. Muziol, K. Nowakowski-Szkudlarek, H. Turski, M. Siekacz, A. Feduniewicz-Zmuda, A. Nowakowska-Szkudlarek, M. Sawicka, P. Perlin. True-blue laser diodes with tunnel junctions grown monolithically by plasma-assisted molecular beam epitaxy. Appl. Phys. Express, 11, 034103(2018).

    [11] M. J. Grundmann, U. K. Mishra. Multi-color light emitting diode using polarization-induced tunnel junctions. Phys. Status Solidi C, 4, 2830-2833(2007).

    [12] S.-R. Jeon, Y.-H. Song, H.-J. Jang, G. M. Yang. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl. Phys. Lett., 78, 3265-3267(2001).

    [13] S. Neugebauer, M. P. Hoffmann, H. Witte, J. Bläsing, A. Dadgar, A. Strittmatter, T. Niermann, M. Narodovitch, M. Lehmann. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications. Appl. Phys. Lett., 110, 102104(2017).

    [14] D. Hwang, A. J. Mughal, M. S. Wong, A. I. Alhassan, S. Nakamura, S. P. DenBaars. Micro-light-emitting diodes with III-nitride tunnel junction contacts grown by metalorganic chemical vapor deposition. Appl. Phys. Express, 11, 012102(2018).

    [15] T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, J. R. P. Schneider, C. Kocot, M. Blomqvist, Y. l. Chang, D. Lefforge, M. R. Krames, L. W. Cook, S. A. Stockman. GaN-based light emitting diodes with tunnel junctions. Jpn. J. Appl. Phys., 40, L861(2001).

    [16] M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, K. E. Waldrip, J. J. Figiel, T. Takeuchi, M. Krames. Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction. Appl. Phys. Lett., 79, 3720-3722(2001).

    [17] Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. Lateral hydrogen diffusion at p-GaN layers in nitride-based light emitting diodes with tunnel junctions. Jpn. J. Appl. Phys., 52, 08JK12(2013).

    [18] Y. Zhang, S. Krishnamoorthy, J. M. Johnson, F. Akyol, A. Allerman, M. W. Moseley, A. Armstrong, J. Hwang, S. Rajan. Interband tunneling for hole injection in III-nitride ultraviolet emitters. Appl. Phys. Lett., 106, 141103(2015).

    [19] Y. Zhang, Z. Jamal-Eddine, F. Akyol, S. Bajaj, J. M. Johnson, G. Calderon, A. A. Allerman, M. W. Moseley, A. M. Armstrong, J. Hwang, S. Rajan. Tunnel-injected sub 290  nm ultra-violet light emitting diodes with 2.8% external quantum efficiency. Appl. Phys. Lett., 112, 071107(2018).

    [20] Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, S. Rajan. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions. Appl. Phys. Lett., 109, 121102(2016).

    [21] A. Knauer, A. Mogilatenko, S. Hagedorn, J. Enslin, T. Wernicke, M. Kneissl, M. Weyers. Correlation of sapphire off-cut and reduction of defect density in MOVPE grown AlN. Phys. Status Solidi B, 253, 809-813(2016).

    [22] A. Knauer, A. Mogilatenko, S. Hagedorn, J. Enslin, T. Wernicke, M. Kneissl, M. Weyers. Correlation of sapphire off-cut and reduction of defect density in MOVPE grown AlN. Phys. Status Solidi B, 253, 1228(2016).

    [23] K. Bellmann, F. Tabataba-Vakili, T. Wernicke, A. Strittmatter, G. Callsen, A. Hoffmann, M. Kneissl. Desorption induced GaN quantum dots on (0001) AlN by MOVPE. Phys. Status Solidi RRL, 9, 526-529(2015).

    [24] J. Enslin, F. Mehnke, A. Mogilatenko, K. Bellmann, M. Guttmann, C. Kuhn, J. Rass, N. Lobo-Ploch, T. Wernicke, M. Weyers, M. Kneissl. Metamorphic Al0.5Ga0.5N:Si on AlN/sapphire for the growth of UVB LEDs. J. Cryst. Growth, 464, 185-189(2017).

    [25] C. Kuhn, T. Simoneit, M. Martens, T. Markurt, J. Enslin, F. Mehnke, K. Bellmann, T. Schulz, M. Albrecht, T. Wernicke, M. Kneissl. MOVPE growth of smooth and homogeneous Al0.8Ga0.2N:Si superlattices as UVC laser cladding layers. Phys. Status Solidi A, 215, 1800005(2018).

    [26] M. Martens, C. Kuhn, E. Ziffer, T. Simoneit, V. Kueller, A. Knauer, J. Rass, T. Wernicke, S. Einfeldt, M. Weyers, M. Kneissl. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes. Appl. Phys. Lett., 108, 151108(2016).

    CLP Journals

    [1] A. Pandey, W. J. Shin, J. Gim, R. Hovden, Z. Mi. High-efficiency AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes[J]. Photonics Research, 2020, 8(3): 331

    [2] Frank Mehnke, Christian Kuhn, Martin Guttmann, Luca Sulmoni, Verena Montag, Johannes Glaab, Tim Wernicke, Michael Kneissl. Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232 nm[J]. Photonics Research, 2021, 9(6): 1117

    [3] Xiaohang Li, Russell D. Dupuis, Tim Wernicke. Semiconductor UV photonics: feature introduction[J]. Photonics Research, 2019, 7(12): SUVP1

    Christian Kuhn, Luca Sulmoni, Martin Guttmann, Johannes Glaab, Norman Susilo, Tim Wernicke, Markus Weyers, Michael Kneissl. MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs[J]. Photonics Research, 2019, 7(5): B7
    Download Citation