• Journal of Atmospheric and Environmental Optics
  • Vol. 13, Issue 6, 462 (2018)
Dandan XU1、2, Jinji MA1、2、*, Yinan WEI1、2, Mingyan GONG1、2, and Zhengqiang LI3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2018.06.007 Cite this Article
    XU Dandan, MA Jinji, WEI Yinan, GONG Mingyan, LI Zhengqiang. New Method for Cloud Phase Retrieval With Combined CloudSat-CALIPSO-MODIS Observations[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 462 Copy Citation Text show less
    References

    [1] Intergovernmental Panel on Climate Change. Climate Change 2013: Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis[R]. 2013.

    [2] Stubenrauch C J, Cros S, Guignard A,et al. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat[J]. Atmospheric Chemistry And Physics, 2010, 10: 7197-7214.

    [3] Urankar G, Prabha T V, Pithurai G,et al. Aerosol and cloud feedbacks on surface energy balance over selected regions of the indian subcontinent[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): 183-204.

    [4] Probst P, Rizzi R, Tosi E,et al. Total cloud cover from satellite observations and climate models[J]. Atmospheric Research, 2012, 107: 161-170.

    [5] Ma J, Wu H, Wang C,et al. Multiyear satellite and surface observations of cloud fraction over China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7655-7666.

    [6] Sodergren H, Mcdonald A, Bodeker G. An energy balance model exploration of the impacts of interactions between surface albedo, water vapour and clouds on polar amplification[C].EGU General Assembly Conference Abstract, 2017, 19: 11025.

    [7] Yoshida R, Okamoto H, Hagihara Y,et al. Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio[J].Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H32.

    [8] Dolinar E K, Dong X, Xi B. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations[J].Climate Dynamics, 2016, 4(7-8): 2123-2144.

    [9] Cesana G, Chepfer H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP[J].Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7922-7937.

    [10] Thompson D R, Mccubbin I, Gao B C,et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy[J]. Journal of Geophysical Research: Atmospheres. 2016, 121(15): 9174-9190.

    [11] Riedi J, Marchant B, Platnick S,et al. Cloud thermodynamic phase inferred from merged POLDER and MODIS data[J]. Atmospheric Chemistry And Physics, 2010, 10(23): 11851-11865.

    [12] Twohy C H, Schanot A J, Cooper W A. Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor[J].Journal of Atmospheric and Oceanic Technology, 1997, 14(1): 197-202.

    [13] Lin D. Temporal and spatial distribution and change trend of cloud water of different types clouds in southwest China[J].Journal of Arid Meteorology, 2015, 33(5): 748-755.

    [14] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (1): cloud phase determination[J].Spectroscopy and Spectral Analysis, 2016, 3(12): 3885-3894.

    [15] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (2): retrieval of cloud effective radius and water path[J].Spectroscopy and Spectral Analysis, 2016, 3(12): 3895-3906.

    [16] Zeng Zhaoliang, Guo Jianping, Ma Daxi,et al. Spatio-temporal variation of aerosol optical depth from CALIPSO and MODIS data and their intercomparison[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 210-220(in Chinese).

    [17] Platnick S, Meyer K G, King M D,et al. The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 55(1): 502-525.

    [18] Marchant B, Platnick S, Meyer, K,et al. MODIS collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP[J]. Atmospheric Measurement Techniques. 2016, 8(11): 11893-11924.

    [19] Stephens G L, Vane D G, Boain R J,et al. The CloudSatmission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J]. Bulletin of the American Meteorological Society, 2002, 83(12): 1771-1790.

    [20] Winker D M, Pelon J, McCormick M P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds[C].Proceedings of SPIE, 2003, 4893: 1-12.

    [21] Qiu Y, Wang J, Yang K. Statistical comparison of cloud and aerosol vertical properties between two eastern China regions based on CloudSat/CALIPSO data[J].Advances in Meteorology, 2017 (2017-3-2): 1-12.

    [22] Hagihara Y, Okamoto H, Luo Z J. Joint analysis of cloud top heights from CloudSat and calipso: new insights into cloud top microphysics[J].Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4087-4106.

    [23] Garnier A, Faivre M, Dubuisson P,et al. Retrieval of cloud and aerosol properties from combined IIR, lidar and WFC observations of CALIPSO[J]. International Coordination Group on Laser Atmospheric Studies, 2012: 697-700.

    [24] Chan M A, Comiso J C. Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat[J].Journal of Climate, 2013, 2(10): 3285-3306.

    [25] Kahn B H, Irion F W, Dang V T,et al. The atmospheric infrared sounder version 6 cloud products[J]. Atmospheric Chemistry and Physics, 2013, 13: 14477-14543.

    [26] Sassen K, Wang Z, Liu D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat[J].Journal of Geophysical Research: Atmospheres, 2009, 114(D4): D00H06.

    [27] Yan W, RenJ Q, Lu W,et al. Cloud phase discrimination technology based on spaceborne millimeter wave radar and lidar data[J]. Journal of Infrared And Millimeter Waves, 2011, 30(1): 68-73.

    [28] Minnis P, Kratz D P, Coakley Jr J A,et al. Cloud optical property retrieval (subsystem 4.3)[J]. Clouds Earth’s Radiant Energy System Algorithm Theoretical basis Documen, 1995, 3: 135-176.

    [29] Kahn B H, Chahine M T, Stephens G L,et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount[J]. Atmospheric Chemistry And Physics Discuss, 2008, 8(5): 1231-1248.

    [30] Delano J, HoganR J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer[J].Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07204.

    [31] McGill M J, Li L, Hart W D,et al. Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D7): D07203.

    [32] Hu Y, Winker D, Vaughan M,et al. CALIPSO/ CALIOP cloud phase discrimination algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(11): 2293-2309.

    [33] Delano J, Hogan R J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds[J].Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H29.

    [34] Bedka K M, Dworak R, Brunner J,et al. Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations[J]. Journal of Applied Meteorology And Climatology, 2012, 51(10): 1811-1822.

    [35] Sun-Mack S, Minnis P, Chen Y,et al. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data[C]. Proceedings of the SPIE, 2007, 6745: 674513.

    [36] Liang Xiaofang, Ma Jinji. Cloud phase discrimination algorithm based on CALIPSO data[J].Journal of Atmospheric and Environmental Optics, 2012, 7(3): 203-207(in Chinese).

    XU Dandan, MA Jinji, WEI Yinan, GONG Mingyan, LI Zhengqiang. New Method for Cloud Phase Retrieval With Combined CloudSat-CALIPSO-MODIS Observations[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 462
    Download Citation