• Opto-Electronic Science
  • Vol. 4, Issue 1, 240024 (2025)
Zhuo Wang,†, Weikang Pan,†, Yu He, Zhiyan Zhu..., Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun* and Lei Zhou**|Show fewer author(s)
DOI: 10.29026/oes.2025.240024 Cite this Article
Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces[J]. Opto-Electronic Science, 2025, 4(1): 240024 Copy Citation Text show less
References

[1] WL Barnes, A Dereux, TW Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

[2] N Fang, H Lee, C Sun et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

[3] SI Bozhevolnyi, VS Volkov, E Devaux et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).

[4] Y Gorodetski, A Niv, V Kleiner et al. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett, 101, 043903(2008).

[5] CL Zhao, YM Liu, YH Zhao et al. A reconfigurable plasmofluidic lens. Nat Commun, 4, 2305(2013).

[6] DJ Richardson, JM Fini, LE Nelson. Space-division multiplexing in optical fibres. Nat Photonics, 7, 354-362(2013).

[7] YR Fang, MT Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl, 4, e294(2015).

[8] XX Guo, YM Ding, X Chen et al. Molding free-space light with guided wave–driven metasurfaces. Sci Adv, 6, eabb4142(2020).

[9] T Li, C Chen, XJ Xiao et al. Revolutionary meta-imaging: from superlens to metalens. Photon Insights, 2, R01(2023).

[10] I Yamada, K Takano, M Hangyo et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings. Opt Lett, 34, 274-276(2009).

[11] B Scherger, C Jördens, M Koch. Variable-focus terahertz lens. Opt Express, 19, 4528-4528(2011).

[12] XL Wei, CM Liu, LT Niu et al. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl Opt, 54, 10641-10649(2015).

[13] R Zia, JA Schuller, A Chandran et al. Plasmonics: the next chip-scale technology. Mater Today, 9, 20-27(2006).

[14] SM Nie, SR Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

[15] S Kim, J Jin, YJ Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).

[16] JN Anker, WP Hall, O Lyandres et al. Biosensing with plasmonic nanosensors. Nat Mater, 7, 442-453(2008).

[17] NF Yu, QJ Wang, MA Kats et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater, 9, 730-735(2010).

[18] M Kauranen, AV Zayats. Nonlinear plasmonics. Nat Photonics, 6, 737-748(2012).

[19] JW Wang, F Sciarrino, A Laing et al. Integrated photonic quantum technologies. Nat Photonics, 14, 273-284(2020).

[20] H Zhang, M Gu, XD Jiang et al. An optical neural chip for implementing complex-valued neural network. Nat Commun, 12, 457(2021).

[21] P Lalanne, JP Hugonin, JC Rodier. Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett, 95, 263902(2005).

[22] F López-Tejeira, SG Rodrigo, L Martín-Moreno et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys, 3, 324-328(2007).

[23] YZ Li, JX Zhang, DD Huang et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol, 12, 987-992(2017).

[24] SJ Kim, JH Kang, M Mutlu et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat Commun, 9, 316(2018).

[25] JH Xiong, EL Hsiang, ZQ He et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl, 10, 216(2021).

[26] HJ Lezec, A Degiron, E Devaux et al. Beaming light from a subwavelength aperture. Science, 297, 820-822(2002).

[27] HF Shi, CL Du, XG Luo. Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl Phys Lett, 91, 093111(2007).

[28] S Kim, Y Lim, H Kim et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett, 92, 013103(2008).

[29] XJ Piao, MS Kumar, S Koo et al. High-efficiency out of plane conversion and manipulation of Surface Plasmon waves, 8800-8805(2010). http://doi.org/10.1109/COIN.2010.5546551

[30] M Ozaki, JI Kato, S Kawata. Surface-plasmon holography with white-light illumination. Science, 332, 218-220(2011).

[31] YH Chen, L Huang, L Gan et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl, 1, e26(2012).

[32] XM Tang, L Li, T Li et al. Converting surface plasmon to spatial Airy beam by graded grating on metal surface. Opt Lett, 38, 1733-1735(2013).

[33] J Chen, T Li, SM Wang et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett, 17, 5051-5055(2017).

[34] NF Yu, P Genevet, MA Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

[35] XJ Ni, NK Emani, AV Kildishev et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

[36] SL Sun, Q He, SY Xiao et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11, 426-431(2012).

[37] Q He, SL Sun, SY Xiao et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater, 6, 1800415(2018).

[38] SL Sun, Q He, JM Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380-479(2019).

[39] SL Sun, KY Yang, CM Wang et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 12, 6223-6229(2012).

[40] TJ Cui, MQ Qi, X Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3, e218(2014).

[41] X Xie, MB Pu, JJ Jin et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126, 183902(2021).

[42] X Li, SY Xiao, BG Cai et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett, 37, 4940-4942(2012).

[43] XZ Chen, LL Huang, H Mühlenbernd et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1198(2012).

[44] F Aieta, MA Kats, P Genevet et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

[45] SM Wang, PC Wu, VC Su et al. Broadband achromatic optical metasurface devices. Nat Commun, 8, 187(2017).

[46] WT Chen, KW Yang, CM Wang et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett, 14, 225-230(2014).

[47] GX Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).

[48] B Xiong, Y Liu, YH Xu et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379, 294-299(2023).

[49] S Krasikov, A Tranter, A Bogdanov et al. Intelligent metaphotonics empowered by machine learning. Opto-Electronic Adv, 5, 210147(2022).

[50] A Pors, MG Nielsen, T Bernardin et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl, 3, e197(2014).

[51] WJ Sun, Q He, SL Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl, 5, e16003(2016).

[52] JW Duan, HJ Guo, SH Dong et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep, 7, 1354(2017).

[53] Z Wang, SQ Li, XQ Zhang et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv Sci, 7, 2000982(2020).

[54] YZ Chen, XY Zheng, XY Zhang et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way. Nano Lett, 23, 3326-3333(2023).

[55] WK Pan, Z Wang, YZ Chen et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 11, 2025-2036(2022).

[56] B Fang, ZZ Wang, SL Gao et al. Manipulating guided wave radiation with integrated geometric metasurface. Nanophotonics, 11, 1923-1930(2022).

[57] HQ Huang, AC Overvig, Y Xu et al. Leaky-wave metasurfaces for integrated photonics. Nat Nanotechnol, 18, 580-588(2023).

[58] JT Ji, ZZ Wang, JC Sun et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams. Nano Lett, 23, 2750-2757(2023).

[59] B Fang, B Fang, B Fang et al. Spin-decoupled meta-coupler empowered multiplexing and multifunction of guided wave radiation. Photonics Res, 11, 2194-2201(2023).

[60] KY Zhao, YL Ha, YH Guo et al. On-chip integrated metasurface empowered multi-channel multiplexed three-dimensional hologram. Adv Opt Mater, 12, 2303009(2024).

[61] WJ Luo, SL Sun, HX Xu et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl, 7, 044033(2017).

[62] WJ Luo, SY Xiao, Q He et al. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater, 3, 1102-1108(2015).

Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces[J]. Opto-Electronic Science, 2025, 4(1): 240024
Download Citation