[1] WL Barnes, A Dereux, TW Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).
[2] N Fang, H Lee, C Sun et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).
[3] SI Bozhevolnyi, VS Volkov, E Devaux et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).
[4] Y Gorodetski, A Niv, V Kleiner et al. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett, 101, 043903(2008).
[5] CL Zhao, YM Liu, YH Zhao et al. A reconfigurable plasmofluidic lens. Nat Commun, 4, 2305(2013).
[6] DJ Richardson, JM Fini, LE Nelson. Space-division multiplexing in optical fibres. Nat Photonics, 7, 354-362(2013).
[7] YR Fang, MT Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl, 4, e294(2015).
[8] XX Guo, YM Ding, X Chen et al. Molding free-space light with guided wave–driven metasurfaces. Sci Adv, 6, eabb4142(2020).
[9] T Li, C Chen, XJ Xiao et al. Revolutionary meta-imaging: from superlens to metalens. Photon Insights, 2, R01(2023).
[10] I Yamada, K Takano, M Hangyo et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings. Opt Lett, 34, 274-276(2009).
[11] B Scherger, C Jördens, M Koch. Variable-focus terahertz lens. Opt Express, 19, 4528-4528(2011).
[12] XL Wei, CM Liu, LT Niu et al. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl Opt, 54, 10641-10649(2015).
[13] R Zia, JA Schuller, A Chandran et al. Plasmonics: the next chip-scale technology. Mater Today, 9, 20-27(2006).
[14] SM Nie, SR Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).
[15] S Kim, J Jin, YJ Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).
[16] JN Anker, WP Hall, O Lyandres et al. Biosensing with plasmonic nanosensors. Nat Mater, 7, 442-453(2008).
[17] NF Yu, QJ Wang, MA Kats et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater, 9, 730-735(2010).
[18] M Kauranen, AV Zayats. Nonlinear plasmonics. Nat Photonics, 6, 737-748(2012).
[19] JW Wang, F Sciarrino, A Laing et al. Integrated photonic quantum technologies. Nat Photonics, 14, 273-284(2020).
[20] H Zhang, M Gu, XD Jiang et al. An optical neural chip for implementing complex-valued neural network. Nat Commun, 12, 457(2021).
[21] P Lalanne, JP Hugonin, JC Rodier. Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett, 95, 263902(2005).
[22] F López-Tejeira, SG Rodrigo, L Martín-Moreno et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys, 3, 324-328(2007).
[23] YZ Li, JX Zhang, DD Huang et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol, 12, 987-992(2017).
[24] SJ Kim, JH Kang, M Mutlu et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat Commun, 9, 316(2018).
[25] JH Xiong, EL Hsiang, ZQ He et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl, 10, 216(2021).
[26] HJ Lezec, A Degiron, E Devaux et al. Beaming light from a subwavelength aperture. Science, 297, 820-822(2002).
[27] HF Shi, CL Du, XG Luo. Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl Phys Lett, 91, 093111(2007).
[28] S Kim, Y Lim, H Kim et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett, 92, 013103(2008).
[29] XJ Piao, MS Kumar, S Koo et al. High-efficiency out of plane conversion and manipulation of Surface Plasmon waves, 8800-8805(2010). http://doi.org/10.1109/COIN.2010.5546551
[30] M Ozaki, JI Kato, S Kawata. Surface-plasmon holography with white-light illumination. Science, 332, 218-220(2011).
[31] YH Chen, L Huang, L Gan et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl, 1, e26(2012).
[32] XM Tang, L Li, T Li et al. Converting surface plasmon to spatial Airy beam by graded grating on metal surface. Opt Lett, 38, 1733-1735(2013).
[33] J Chen, T Li, SM Wang et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett, 17, 5051-5055(2017).
[34] NF Yu, P Genevet, MA Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).
[35] XJ Ni, NK Emani, AV Kildishev et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).
[36] SL Sun, Q He, SY Xiao et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 11, 426-431(2012).
[37] Q He, SL Sun, SY Xiao et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater, 6, 1800415(2018).
[38] SL Sun, Q He, JM Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380-479(2019).
[39] SL Sun, KY Yang, CM Wang et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 12, 6223-6229(2012).
[40] TJ Cui, MQ Qi, X Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3, e218(2014).
[41] X Xie, MB Pu, JJ Jin et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126, 183902(2021).
[42] X Li, SY Xiao, BG Cai et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett, 37, 4940-4942(2012).
[43] XZ Chen, LL Huang, H Mühlenbernd et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1198(2012).
[44] F Aieta, MA Kats, P Genevet et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).
[45] SM Wang, PC Wu, VC Su et al. Broadband achromatic optical metasurface devices. Nat Commun, 8, 187(2017).
[46] WT Chen, KW Yang, CM Wang et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett, 14, 225-230(2014).
[47] GX Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).
[48] B Xiong, Y Liu, YH Xu et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379, 294-299(2023).
[49] S Krasikov, A Tranter, A Bogdanov et al. Intelligent metaphotonics empowered by machine learning. Opto-Electronic Adv, 5, 210147(2022).
[50] A Pors, MG Nielsen, T Bernardin et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl, 3, e197(2014).
[51] WJ Sun, Q He, SL Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl, 5, e16003(2016).
[52] JW Duan, HJ Guo, SH Dong et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep, 7, 1354(2017).
[53] Z Wang, SQ Li, XQ Zhang et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv Sci, 7, 2000982(2020).
[54] YZ Chen, XY Zheng, XY Zhang et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way. Nano Lett, 23, 3326-3333(2023).
[55] WK Pan, Z Wang, YZ Chen et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 11, 2025-2036(2022).
[56] B Fang, ZZ Wang, SL Gao et al. Manipulating guided wave radiation with integrated geometric metasurface. Nanophotonics, 11, 1923-1930(2022).
[57] HQ Huang, AC Overvig, Y Xu et al. Leaky-wave metasurfaces for integrated photonics. Nat Nanotechnol, 18, 580-588(2023).
[58] JT Ji, ZZ Wang, JC Sun et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams. Nano Lett, 23, 2750-2757(2023).
[59] B Fang, B Fang, B Fang et al. Spin-decoupled meta-coupler empowered multiplexing and multifunction of guided wave radiation. Photonics Res, 11, 2194-2201(2023).
[60] KY Zhao, YL Ha, YH Guo et al. On-chip integrated metasurface empowered multi-channel multiplexed three-dimensional hologram. Adv Opt Mater, 12, 2303009(2024).
[61] WJ Luo, SL Sun, HX Xu et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl, 7, 044033(2017).
[62] WJ Luo, SY Xiao, Q He et al. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater, 3, 1102-1108(2015).