• High Power Laser and Particle Beams
  • Vol. 33, Issue 5, 053001 (2021)
Ziyu Wang, Jihua Shang, Xinyu Yang, and Jiuxing Zhang
Author Affiliations
  • School of Material Science and Engineering, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.11884/HPLPB202133.200335 Cite this Article
    Ziyu Wang, Jihua Shang, Xinyu Yang, Jiuxing Zhang. Microstructure characterization and thermionic emission performance of barium-tungsten cathode[J]. High Power Laser and Particle Beams, 2021, 33(5): 053001 Copy Citation Text show less
    References

    [1] Thomas R E, Gibson J W, Haas G A, et al. Thermionic sources for high-brightness electron beams[J]. IEEE Transactions on Electron Devices, 37, 850-861(1990).

    [3] Kirkwood D M, Gross S J, Balk T J, et al. Frontiers in thermionic cathode research[J]. IEEE Transactions on Electron Devices, 65, 2061-2071(2018).

    [5] Wang Xiaoxia, Chen Xiaoqian, Zhang Shuai, et al. The wk function of the ammonium perrhenate impregnated W matrix BaW cathode[C]Proceedings of the 2019 International Vacuum Electronics Conference (IVEC). 2019.

    [6] Li Jinglin, Zhao Weihua, Wei Jianjun, et al. Effect of BaO on the phase composition and properties of aluminates for Ba-W cathodes[J]. Ceramics International, 45, 4308-4315(2019).

    [7] Shang Jihua, Yang Xinyu, Wang Ziyu, et al. Influence of the surface tungsten distribution on the emission properties of barium tungsten cathode[J]. IEEE Transactions on Electron Devices, 67, 2580-2584(2020).

    [8] Li Jinglin, Wei Jianjun, Feng Yongbao, et al. Effect of CaO on phase composition and properties of aluminates for barium tungsten cathode[J]. Materials, 11, 1380(2018).

    [9] Gӓrtner G, Geittner P, Lydtin H, et al. Emission properties of top-layer scandate cathodes prepared by LAD[J]. Applied Surface Science, 111, 11-17(1997).

    [10] Hu Mingwei, Wang Xiaoxia, Qi Shikai. Preparation, performance, and work function model of impregnated tungstate cathodes[J]. IEEE Transactions on Electron Devices, 66, 3592-3598(2019).

    [11] Wu Zhaohao. The relations of impregnated cathode properties to the tungsten matrix structure[J]. Journal of Electronics (China), 4, 273-281(1987).

    [12] Melnikova I P, Vorozheikin V G, Usanov D A. Correlation of emission capability and longevity of dispenser cathodes with characteristics of tungsten powders[J]. Applied Surface Science, 215, 59-64(2003).

    [13] Singh A K, Ravi M, Bisht M S, et al. Study and development of active sintered controlled porosity dispenser cathode[J]. IEEE Transactions on Electron Devices, 62, 3837-3843(2015).

    [15] Bao Jixiu, Wan Baofei. The tungsten powder study of the dispenser cathode[J]. Applied Surface Science, 252, 5873-5876(2006).

    [16] Skorokhod V V, Get’Man O I, Zuev A E, et al. Correlation between the particle size, pore size, and porous structure of sintered tungsten[J]. Soviet Powder Metallurgy and Metal Ceramics, 27, 941-947(1988).

    [17] Deng Shenghua, Yuan Tiechui, Li Ruidi, et al. Spark plasma sintering of pure tungsten powder: densification kinetics and grain growth[J]. Powder Technology, 310, 264-271(2017).

    [18] Qin Junhua, Chen Qing, Yang Chunyan, et al. Research process on property and application of metal porous materials[J]. Journal of Alloys and Compounds, 654, 39-44(2016).

    [19] Dudina D V, Bokhonov B B, Olevsky E A. Fabrication of porous materials by spark plasma sintering: a review[J]. Materials, 12, 541-569(2019).

    [20] Li Baoqiang, Sun Zhiqiang, Jin Huacheng, et al. Fabrication of homogeneous tungsten porous matrix using spherical tungsten powders prepared by thermal plasma spheroidization process[J]. International Journal of Refractory Metals and Hard Materials, 59, 105-113(2016).

    [23] Yin Shengyin, Zhang Zhaochuan, Peng Zhen, et al. A new impregnated dispenser cathode[J]. IEEE Transactions on Electron Devices, 60, 4258-4262(2013).

    Ziyu Wang, Jihua Shang, Xinyu Yang, Jiuxing Zhang. Microstructure characterization and thermionic emission performance of barium-tungsten cathode[J]. High Power Laser and Particle Beams, 2021, 33(5): 053001
    Download Citation