• Frontiers of Optoelectronics
  • Vol. 14, Issue 1, 4 (2021)
Yan ZHANG*, Kaixuan LI, and Huan ZHAO
Author Affiliations
  • Department of Physics, Beijing Key Laboratory for Metamaterials and Devices, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.1007/s12200-020-1052-9 Cite this Article
    Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Frontiers of Optoelectronics, 2021, 14(1): 4 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    [2] Beard M C, Turner G M, Schmuttenmaer C A. Terahertz spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159

    [3] Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586

    [4] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

    [5] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690

    [6] Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769

    [7] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18

    [8] Hirori H, Tanaka K. Dynamical nonlinear interaction of solids with strong terahertz pulses. Journal of the Physical Society of Japan, 2016, 85(8): 082001

    [9] Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201

    [10] Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34

    [11] Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M. Single-cycle terahertz pulses with >0.2 V/A field amplitudes via coherent transition radiation. Applied Physics Letters, 2011, 99(14): 141117

    [12] Li H T, Lu Y L, He Z G, Jia Q K, Wang L. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(7): 649–657

    [13] Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624

    [14] Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923

    [15] Buryakov A M, Ivanov M S, Nomoev S A, Khusyainov D I, Mishina E D, Khomchenko V A, Vasilevskii I S, Vinichenko A N, Kozlovskii K I, Chistyakov A A, Paixao J A. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin, 2020, 122: 110688

    [16] Doany F E, Grischkowsky D, Chi C C. Carrier lifetime versus ionimplantation dose in silicon on sapphire. Applied Physics Letters, 1987, 50(8): 460–462

    [17] Sarkisov S Y, Safiullin F D, Skakunov M S, Tolbanov O P, Tyazhev A V, Nazarov M M, Shkurinov A P. Dipole antennas based on SI-GaAs:Cr for generation and detection of terahertz radiation. Russian Physics Journal, 2013, 55(8): 890–898

    [18] Rode J C, Chiang H W, Choudhary P, Jain V, Thibeault B J, Mitchell W J, Rodwell M J W, Urteaga M, Loubychev D, Snyder A, Wu Y, Fastenau J M, Liu A W K. Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Journal of Transactions on Electron Devices, 2015, 62(9):2779–2785

    [19] Simoens F, Meilhan J, Delplanque B, Gidon S, Lasfargues G, Dera J L, Nguyen D T, Ouvrier-Buffet J L, Pocas S, Maillou T, Cathabard O, Barbieri S. Real-time imaging with THz fullycustomized uncooled amorphous-silicon microbolometer focal plane arrays. Proceedings of the Society for Photo-Instrumentation Engineers, 2012, 8363: 83630D, 83630D-12

    [20] You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292

    [21] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004

    [22] Kasai S, Watanabe M, Ouchi T. Improved terahertz wave intensity in photoconductive antennas formed of annealed low-temperature grown GaAs. Japanese Journal of Applied Physics, 2007, 46(7A): 4163–4165

    [23] Yoneda H, Tokuyama K, Nagata H. Generation of high-peakpower THz radiation by using diamond photoconductive antenna array. In: Proceedings of the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS). San Diego: IEEE, 2001, 644–645

    [24] Ono S, Murakami H, Quema A, Diwa G, Sarukura N, Nagasaka R, Ichikawa Y, Ogino H, Ohshima E, Yoshikawa A, Fukuda T. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112

    [25] Ahi K. Review of GaN-based devices for terahertz operation. Optical Engineering (Redondo Beach, Calif.), 2017, 56(09): 090901

    [26] Cho P S, Ho P T, Goldhar J, Lee C H. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics, 1994, 30(6): 1489–1497

    [27] Kikuma I, Matsuo M, Komuro T. In situ annealing of melt-Grown ZnSe crystals under Zn partial pressure. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 5A): L531–L534

    [28] Ropagnol X, Bouvier M, Reid M, Ozaki T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107

    [29] Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112

    [30] Xu M, Mittendorff M, Dietz R J B, Künzel H, Sartorius B, Gobel T, Schneider H, Helm M, Winnerl S. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm. Applied Physics Letters, 2013, 103(25): 251114

    [31] Salem B, Morris D, Aimez V, Beerens J, Beauvais J, Houde D. Pulsed photoconductive antenna terahertz sources made on ionimplanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327–7333

    [32] Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114

    [33] Ropagnol X, Morandotti R, Ozaki T, Reid M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Journal of Photonics, 2011, 3(2): 174–186

    [34] Hattori T, Egawa K, Ookuma S I, Itatani T. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424

    [35] Beck M, Schafer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257

    [36] Yardimci N T, Yang S H, Berry C W, Jarrahi M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229

    [37] Madéo J, Jukam N, Oustinov D, Rosticher M, Rungsawang R, Tignon J, Dhillon S S. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613

    [38] Ropagnol X, Morandotti R, Ozaki T, Reid M. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664

    [39] Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Coté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311

    [40] Ropagnol X, Chai X, Raeis-Zadeh S M, Safavi-Naeini S, Kirouac-Turmel M, Bouvier M, Coté C Y, Reid M, Gauthier M A, Ozaki T. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8

    [41] Shi W, Hou L, Wang X M. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111

    [42] Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pules by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19

    [43] Blanchard F, Sharma G, Razzari L, Ropagnol X, Bandulet H C, Vidal F, Morandotti R, Kieffer J C, Ozaki T, Tiedje H, Haugen H, Reid M, Hegmann F. Generation of intense terahertz radiation via optical methods. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 5–16

    [44] Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220

    [45] Loffler T, Hahn T, Thomson M, Jacob F, Roskos H. Large-area electro-optic ZnTe terahertz emitters. Optics Express, 2005, 13(14): 5353–5362

    [46] Fülop J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559

    [47] Blanchard F, Ropagnol X, Hafez H, Razavipour H, Bolduc M, Morandotti R, Ozaki T, Cooke D G. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters, 2014, 39(15): 4333–4336

    [48] Pálfalvi L, Hebling J, Almasi G, Peter A, Polgar K, Lengyel K, Szipocs R. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Journal of Applied Physics, 2004, 95(3): 902–908

    [49] Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, Kartner F X. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38(5): 796–798

    [50] Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, Wang X, Ruan C J, Li Y T. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Optics Express, 2018, 26(6): 7107–7116

    [51] Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103

    [52] Jazbinsek M, Puc U, Abina A, Zidansek A. Organic crystal for THz photonics. Applied Sciences (Basel, Switzerland), 2019, 9(5): 882

    [53] Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field singlecycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116

    [54] Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976

    [55] Liu B, Bromberger H, Cartella A, Gebert T, Forst M, Cavalleri A. Generation of narrowband, high-intensity, carrier-envelope phasestable pulses tunable between 4 and 18 THz. Optics Letters, 2017, 42(1): 129–131

    [56] Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C L, Zhang L L, Shalaby M. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Applied Physics Letters, 2019, 114(24): 241101

    [57] Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Applied Physics Letters, 1999, 75(8): 1060–1062

    [58] Junginger F, Sell A, Schubert O, Mayer B, Brida D, Marangoni M, Cerullo G, Leitenstorfer A, Huber R. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Optics Letters, 2010, 35(15): 2645–2647

    [59] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

    [60] Sun W F, Zhou Y S, Wang X K, Zhang Y. External electric field control of THz pulse generation in ambient air. Optics Express, 2008, 16(21): 16573–16580

    [61] Bakhtiari F, Esmaeilzadeh M, Ghafary B. Terahertz radiation with high power and high efficiency in a magnetized plasma. Physics of Plasmas, 2017, 24(7): 073112

    [62] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

    [63] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugzlys A, Baltuska A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nature Communications, 2020, 11(1): 292

    [64] Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609

    [65] Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

    [66] Dai J M, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117

    [67] Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Physical Review Letters, 2017, 119(23): 235001

    [68] Peng X Y, Li C, Chen M, Toncian T, Jung R, Willi O, Li Y T, Wang W M, Wang S J, Liu F, Pukhov A, Sheng Z M, Zhang J. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters, 2009, 94(10): 101502

    [69] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

    [70] Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters, 2016, 116(20): 205003

    [71] Tian Y, Liu J S, Bai Y F, Zhou S Y, Sun H Y, LiuW W, Zhao J Y, Li R X, Xu Z Z. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photonics, 2017, 11(4): 242–246

    [72] Jin Q, E Y, Williams K, Dai J, Zhang X C. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103

    [73] Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184

    [74] Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M, Zhang X C. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005

    [75] Zhu L G, Kubera B, Fai Mak K, Shan J. Effect of surface states on terahertz emission from the Bi2Se3 surface. Scientific Reports, 2015, 5(1): 10308

    [76] Luo CW, Chen H J, Tu C M, Lee C C, Ku S A, TzengWY, Yeh T T, Chiang M C,Wang H J, Chu WC, Lin J Y,Wu K H, Juang J Y, Kobayashi T, Cheng CM, Chen C H, Tsuei K D, Berger H, Sankar R, Chou F C, Yang H D. THz generation and detection on Dirac Fermions in topological insulators. Advanced Optical Materials, 2013, 1(11): 804–808

    [77] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Klaui M, Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488

    [78] Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, Qi J B. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials, 2016, 4(12): 1944–1949

    [79] Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV$cm–1 from a metallic spintronic emitter. Applied Physics Letters, 2017, 110: 252402

    [80] Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5(1): 3055

    [81] Keren-Zur S, Tal M, Fleischer S, Mittleman D M, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nature Communications, 2019, 10(1): 1778

    [82] Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108

    [83] Hirori H, Doi A A, Blanchard F, Tanaka K. Single cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

    [84] Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260

    [85] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

    [86] Fattinger C, Grischkowsky D R. Terahertz beams. Applied Physics Letters, 1989, 54(6): 490–492

    [87] van Exter M, Grischkowsky D R. Characterization of an optoelectronic terahertz beam system. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1684–1691

    [88] Lee Y S. Principles of Terahertz Science and Technology. Berlin: Springer, 2008

    [89] Singh A, Pal S, Surdi H, Prabhu S S, Mathimalar S, Nanal V, Pillay R G, Dohler G H. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Optics Express, 2015, 23(5): 6656–6661

    [90] Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324

    [91] Hattori T, Tukamoto K, Nakatsuka H. Time-resolved study of intense terahertz pulses generated by a large aperture photoconductive antenna. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 8): 4907–4912

    [92] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics, 1996, 13(11): 2424–2436

    [93] Sharma G, Al-Naib I, Hafez H, Morandotti R, Cooke D G, Ozaki T. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Optics Express, 2012, 20(16): 18016–18024

    [94] Gallot G, Zhang J, McGowan R, Jeon T, Grischkowsky D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Applied Physics Letters, 1999, 74(23): 3450–3452

    [95] Kübler C, Huber R, Tübel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362

    [96] Reimann K, Smith R P, Weiner A M, Elsaesser T, Woerner M. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Optics Letters, 2003, 28(6): 471–473

    [97] Schall M, Helm H, Keiding S R. Far infrared properties of electrooptic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595–604

    [98] Sharma G, Singh K, Al-Naib I, Morandotti R, Ozaki T. Terahertz detection using spectral domain interferometry. Optics Letters, 2012, 37(20): 4338–4340

    [99] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

    [100] Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131

    [101] Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883

    [102] Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002

    [103] Liu J L, Zhang X C. Plasma characterization using terahertz-waveenhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505

    [104] Liu J L, Dai J M, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631

    [105] Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546

    [106] Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear freecarrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304

    [107] Paul M, Chang Y, Thompson Z, Stickel A, Wardini J, Choi H, Minot E, Hou B, Nees J, Norris T, Lee Y. High-field terahertz response of graphene. New Journal of Physics, 2013, 15(8): 085019

    [108] Bowlan P, Martinez-Moreno E, Reimann K, Elsaesser T, Woerner M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Physical Review B, 2014, 89(4): 041408

    [109] Melnik M, Vorontsova I, Putilin S, Tcypkin A, Kozlov S. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Scientific Reports, 2019, 9(1): 9146

    [110] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S, Huber R. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123

    [111] Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J,Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M, Turchinovich D. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561(7724): 507–511

    [112] Bahk Y M, Kang B J, Kim Y S, Kim J Y, Kim W T, Kim T Y, Kang T, Rhie J, Han S, Park C H, Rotermund F, Kim D S. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters, 2015, 115(12): 125501

    [113] Jadidi M M, Konig-Otto J C, Winnerl S, Sushkov A B, Drew H D, Murphy T E, Mittendorff M. Nonlinear terahertz absorption of graphene plasmons. Nano Letters, 2016, 16(4): 2734–2738

    [114] Giorgianni F, Chiadroni E, Rovere A, Cestelli-Guidi M, Perucchi A, Bellaveglia M, Castellano M, Di Giovenale D, Di Pirro G, Ferrario M, Pompili R, Vaccarezza C, Villa F, Cianchi A, Mostacci A, Petrarca M, Brahlek M, Koirala N, Oh S, Lupi S. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 2016, 7(1): 11421

    [115] Vicario C, Shalaby M, Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters, 2017, 118(8): 083901

    [116] Chefonov O V, Ovchinnikov A V, Agranat M B, Fortov V E, Efimenko E S, Stepanov A N, Savel’ev A B. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n-doped Si. Physical Review B, 2018, 98(16): 165206

    [117] Pashkin A, Sell A, Kampfrath T, Huber R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003

    [118] Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201

    [119] Wang Z, Pietz M, Walowski J, Forster A, Lepsa M I, Münzenberg M. Spin dynamics triggered by subterahertz magnetic field pulses. Journal of Applied Physics, 2008, 103(12): 123905

    [120] Beaurepaire E, Merle J, Daunois A, Bigot J. Ultrafast spin dynamics in ferromagnetic nickel. Physical Review Letters, 1996, 76(22): 4250–4253

    [121] Li X, Qiu T, Zhang J, Baldini E, Lu J, Rappe A M, Nelson K A. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science, 2019, 364(6445): 1079–1082

    [122] Razzari L, Su F, Sharma G, Blanchard F, Ayesheshim A, Bandulet H, Morandotti H, Kieffer J, Ozaki T, Reid M, Hegmann F. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B, 2009, 79(19): 193204

    [123] Kaur G, Han P, Zhang X. Terahertz induced nonlinear effects in doped Silicon observed by open-aperture Z-scan. In: Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome: IEEE, 2010, 5613068

    [124] Strait J H, Wang H, Shivaraman S, Shields V, Spencer M, Rana F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Letters, 2011, 11(11): 4902–4906

    [125] Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Physical Review B, 2012, 85(3): 035443

    [126] Docherty C J, Lin C T, Joyce H J, Nicholas R J, Herz L M, Li L J, Johnston M B. Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3(1): 1228

    [127] Jnawali G, Rao Y, Yan H, Heinz T F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, 13(2): 524–530

    [128] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics, 2013, 9(4): 248–252

    [129] Wright A, Xu X, Cao J, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101

    [130] Ishikawa K. Nonlinear optical response of graphene in time domain. Physical Review B, 2012, 85: 035443

    [131] Shareef S, Ang Y, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274–279

    [132] Hafez H A, Al-Naib I, Oguri K, Sekine Y, Dignam M M, Ibrahim A, Cooke D G, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear transmission of an intense terahertz field through monolayer graphene. AIP Advances, 2014, 4(11): 117118

    [133] Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629

    [134] Hafez H, Al-Naib I, Dignam M, Sekine Y, Oguri K, Blanchard F, Cooke D, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Physical Review B, 2015, 91(3): 035422

    [135] Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A29–A34

    [136] Hebling J, Hoffmann M, Hwang H, Yeh K, Nelson K. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Physical Review B, 2010, 81(3): 035201

    [137] Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Physical Review B, 2009, 79(16): 161201

    [138] Hwang H Y, Brandt N C, Farhat H, Hsu A L, Kong J, Nelson K A. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene. Journal of Physical Chemistry B, 2013, 117(49): 15819–15824

    [139] Sá J, Fernandes D L A, Pavliuk M V, Szlachetko J. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science & Technology, 2017, 7(5): 1050–1054

    [140] Tani S, Blanchard F, Tanaka K. Ultrafast carrier dynamics in graphene under a high electric field. Physical Review Letters, 2012, 109(16): 166603

    [141] Reyna A S, de Araújo C B. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics, 2017, 9(4): 720–724

    [142] Reshef O, Giese E, Zahirul Alam M, De Leon I, Upham J, Boyd R W. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 2017, 42(16): 3225–3228

    [143] Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X. Terahertz magnetic field induced coherent spin precession in YFeO3. Applied Physics Letters, 2012, 100(6): 061102

    Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Frontiers of Optoelectronics, 2021, 14(1): 4
    Download Citation