[1] 李志婷,王昌昆,潘贤章,等.基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算[J].农业工程学报,2016,32(S1):145-152. doi: 10.11975/j.issn.1002-6819.2016.z1.021LIZH T, WANGCH K, PANX ZH, et.al. Estimation of wheat residue cover using simulated Landsat-8 OLI datas[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(S1):145-152. (in Chinese). doi: 10.11975/j.issn.1002-6819.2016.z1.021
[2] 刘继龙,任高奇,付强,等. 秸秆还田下土壤水分时间稳定性与玉米穗质量的相关性[J].农业机械学报,2019,50(5):320-326. doi: 10.6041/j.issn.1000-1298.2019.05.036LIUJ L, RENG Q, FUQ, et al. Relationship between temporal stability of soil water and corn ear weight under straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):320-326. (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.05.036
[3] 龚振平,杜婷婷,闫超,等.玉米秸秆还田及施磷量对黑土磷吸附与解吸特性的影响[J].农业工程学报,2019,35(22):161-169. doi: 10.11975/j.issn.1002-6819.2019.22.019GONGZ P, DUT T, YANCH, et al. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(22):161-169. (in Chinese). doi: 10.11975/j.issn.1002-6819.2019.22.019
[4] L ROTH, C BARENDREGT, C A BETRIX et al. High-throughput field phenotyping of soybean: spotting an ideotype. Remote Sensing of Environment, 269, 112797(2022).
[5] B J ZHENG, J B CAMPBELL, G SERBIN et al. Remote sensing of crop residue and tillage practices: present capabilities and future prospects. Soil & Tillage Research, 138, 26-34(2014).
[6] 黄晋宇,刘忠,万炜,等.基于土壤异质背景的玉米秸秆覆盖度遥感反演[J].应用生态学报,2020,31(2):474-482.HUANGJ Y, LIUZH, WANW, et al. Remote sensing retrieval of maize residue cover on soil heterogeneous background[J]. Chinese Journal of Applied Ecology,2020,31(2):474-482. (in Chinese)
[7] C S T DAUGHTRY. Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93, 125-131(2001).
[8] C S T DAUGHTRY, G SERBIN, REEVES J BⅢ et al. Spectral reflectance of wheat residue during decomposition and remotely sensed estimates of residue cover. Remote Sensing, 2, 416-431(2010).
[9] L E FELIPE, K FELIX, T TEJA et al. Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes-A systematic review. The Science of the Total Environment, 732, 139204(2020).
[10] A KHALIQ, L COMBA, A BIGLIA et al. Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sensing, 11, 436(2019).
[11] Z KAVOOSI, M H RAOUFAT, M DEHGHANI et al. Feasibility of satellite and drone images for monitoring soil residue cover. Journal of the Saudi Society of Agricultural Sciences, 19, 56-64(2020).
[12] D BAI, D L LI, C S ZHAO et al. Estimation of soybean yield parameters under lodging conditions using RGB information from unmanned aerial vehicles. Frontiers in Plant Science, 13, 1012293(2022).
[13] 韩文霆,崔家伟,崔欣,等.基于特征优选与机器学习的农田土壤含盐量估算研究[J].农业机械学报,2023,54(3):328-337.HANW T, CUIJ W, CUIX, et al. Estimation of farmland soil salinity content based on feature optimization and machine learning algorithms[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):328-337. (in Chinese)
[14] 王琪,常庆瑞,李铠,等.基于主成分分析和随机森林回归的冬小麦冠层叶绿素含量估算[J/OL].麦类作物学报,2024,44(4):532-542.WANGQ, CHANGQ R, LIK, et al. Estimation of winter wheat canopy chlorophyll content based on principal component analysis and random forest regression[J]. Journal of Triticeae Crops,2024,44(4):532-542. (in Chinese)
[15] T VAN KLOMPENBURG, A KASSAHUN, C CATAL. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709(2020).
[16] S P FEI, M A HASSAN, Y G XIAO et al. Application of multi-layer neural network and hyperspectral reflectance in genome-wide association study for grain yield in bread wheat. Field Crops Research, 289, 108730(2022).
[17] J K LIU, Y J ZHU, X Y TAO et al. Rapid prediction of winter wheat yield and nitrogen use efficiency using consumer-grade unmanned aerial vehicles multispectral imagery. Frontiers in Plant Science, 13, 1032170(2022).
[18] Y FENG, N B CUI, W P HAO et al. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma, 338, 67-77(2019).
[19] G B HUANG, X J DING, H M ZHOU et al. Optimization method based extreme learning machine for classification. Neurocomputing, 74, 155-163(2010).
[20] B ZHU, Y FENG, D Z GONG et al. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Computers and Electronics in Agriculture, 173, 105430(2020).
[21] L N MO, H Z CHEN, W H CHEN et al. Study on evolution methods for the optimization of machine learning models based on FT-NIR spectroscopy. Infrared Physics & Technology, 108, 103366(2020).
[22] 解宏图,杜海旺,王影,等.玉米秸秆集行全量覆盖还田苗带条耕保护性耕作技术模式[J].农业工程,2020,10(03):24-26.XIEH T, DUH W, WANGY, et al. Protective Cultivation Technology Model of Strip Tillage with Full Coverage of Corn Straw[J]. Agricultural Engineering,2020,10(03):24-26. (in Chinese)
[23] 刘媛媛,孙嘉慧,张书杰,等.用多阈值多目标无人机图像分割优化算法检测秸秆覆盖率[J].农业工程学报,2020,36(20):134-143. doi: 10.11975/j.issn.1002-6819.2020.20.016LIUY Y, SUNJ H, ZHANGSH J, et al. Detection of straw coverage based on multi-threshold and multi-target UAV image segmentation optimization algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(20):134-143.(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.20.016
[24] 刘媛媛,何铭,王跃勇,等.基于优化SIFT算法的农田航拍全景图像快速拼接[J].农业工程学报,2023,39(01):117-125. doi: 10.11975/j.issn.1002-6819.202210135LIUY Y, HEM, WANGY Y, et al. Fast stitching for the farmland aerial panoramic images based on optimized SIFT algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(1):117-125. (in Chinese). doi: 10.11975/j.issn.1002-6819.202210135
[25] 刘媛媛,周小康,王跃勇,等.改进U-Net模型的保护性耕作田间秸秆覆盖检测[J].光学精密工程,2022,30(9):1101-1112. doi: 10.37188/ope.20223009.1101LIUY Y, ZHOUX K, WANGY Y, et al. Straw coverage detection of conservation tillage farmland based on improved U-Net model[J]. Opt. Precision Eng,2022,30(9):1101-1112. (in Chinese). doi: 10.37188/ope.20223009.1101
[26] 刘媛媛,张硕,于海业,等. 基于语义分割的复杂场景下的秸秆检测[J].光学精密工程,2020,28(1):200-211. doi: 10.3788/ope.20202801.0200LIUY Y, ZHANGSH, YUH Y, et al. Straw detection algorithm based on semantic segmentation in complex farm scenarios[J]. Opt. Precision Eng,2020,28(1):200-211. (in Chinese). doi: 10.3788/ope.20202801.0200
[27] 陶万成,张颖,谢茈萱,等.基于时序Sentinel-2A影像的玉米秸秆覆盖区智能识别研究[J].光谱学与光谱分析,2022,42(6):1948-1955.TAOW CH, ZHANGY, XIEZH X, et al. Intelligent recognition of corn residue cover area by time SeriesSentine2A images[J]. Spectroscopy and Spectral Analysis,2022,42(6):1948-1955. (in Chinese)
[28] J A SCHNELL. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Nasa/gsfct Type Final Report, 1-12(1974).
[29] C J TUCKER. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150(1979).
[30] C F JORDAN. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663-666(1969).
[31] A A GITELSON, Y J KAUFMAN, M N MERZLYAK. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289-298(1996).
[32] 包颖,田庆久,王玲.基于HJ-1卫星CCD遥感数据的作物秸秆光谱识别模型与提取方法研究[J].遥感信息,2011,26(5):15-19,122.BAOY, TIANQ G, WANGL. A study on crop straw spectrum diagnosis model and extraction using HJ-1 CCD remote sensing data[J]. Remote Sensing Information,2011,26(5):15-19,122. (in Chinese)
[33] L Z LIU, X YANG, H K ZHOU et al. Relationship of root zone soil moisture with solar-induced chlorophyll fluorescence and vegetation indices in winter wheat: A comparative study based on continuous ground-measurements. Ecological Indicators, 90, 9-17(2018).
[34] 刁淑娟, 刘春玲, 张涛, 等. 基于SVM的湖泊咸度等级遥感信息提取方法: 以内蒙古巴丹吉林沙漠为例[J]. 国土资源遥感, 2016, 28(4): 114-118.DIAOSH J, LIUCH L, ZHANGT, et al. Extraction of remote sensing information for lake salinity level based on SVM: a case from Badain Jaran Desert in Inner Mongolia[J]. Remote Sensing for Land & Resources,2016,28(4):114-118. (in Chinese)
[35] Z X ZHANG, X T LI, Y C QIU et al. A spatial downscaling method for solar-induced chlorophyll fluorescence product using random forest regression and drought monitoring in henan province. Remote Sensing, 16, 963(2024).
[36] H H ZHU, Z Q CUI, J LIU et al. A method for inverting shallow sea acoustic parameters based on the backward feedback neural network model. Journal of Marine Science and Engineering, 11, 1340(2023).
[37] M MAIMAITIYIMING, V SAGAN, P SIDIKE et al. Dual activation function-based Extreme Learning Machine (ELM) for estimating grapevine berry yield and quality. Remote Sensing, 11, 740(2019).
[38] 杨宁,崔文轩,张智韬,等.无人机多光谱遥感反演不同深度土壤盐分[J].农业工程学报,2020,36(22):13-21. doi: 10.11975/j.issn.1002-6819.2020.22.002YANGN, CUIW X, ZHANGZH T, et al. Inversion of soil salinity at different depths by UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(22):13-21. (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.22.002
[39] C CAVALLARO, V CUTELLO, M PAVONE et al. Machine learning and genetic algorithms: a case study on image reconstruction. Knowledge-Based Systems, 284, 111194(2024).
[40] M N NADEGE, S JIANG, G C MWAKIPUNDA et al. Brittleness index prediction using modified random forest based on particle swarm optimization of Upper Ordovician Wufeng to Lower Silurian Longmaxi shale gas reservoir in the Weiyuan Shale Gas Field, Sichuan Basin, China. Geoenergy Science and Engineering, 233, 212518(2024).
[41] F ZHAO, Y CHENG, H T PAN et al. Solving redundant inverse kinematics of CMOR based on chaos-driven particle swarm optimization algorithm. Fusion Engineering and Design, 192, 113712(2023).
[42] W J ZHAO, C ZHOU, C Q ZHOU et al. Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing. Remote Sensing, 14, 1804(2022).
[43] 张智韬,魏广飞,姚志华,等.基于无人机多光谱遥感的土壤含盐量反演模型研究[J].农业机械学报,2019,50(12):151-160. doi: 10.6041/j.issn.1000-1298.2019.12.017ZHANGZH T, WEIG F, YAOZH H, et al. Soil salt inversion model based on uav multispectral remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):151-160. (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.12.017
[44] A MORELLOS, X E PANTAZI, D MOSHOU et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering, 152, 104-116(2016).
[45] 霍丽丽,赵立欣,姚宗路,等.中国玉米秸秆草谷比及其资源时空分布特征[J].农业工程学报,2020,36(21):227-234. doi: 10.11975/j.issn.1002-6819.2020.21.027HUOL L, ZHAOL X, YAOZ L, et al. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(21): 227-234.(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.21.027