• Nano-Micro Letters
  • Vol. 16, Issue 1, 006 (2024)
Tianbao Zhao1,2,†, Zirui Jia3,†,*, Jinkun Liu2,†..., Yan Zhang2, Guanglei Wu2,** and Pengfei Yin1,***|Show fewer author(s)
Author Affiliations
  • 1College of Science, Sichuan Agricultural University, Ya’an 625014, People’s Republic of China
  • 2Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People’s Republic of China
  • 3College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01212-4 Cite this Article
    Tianbao Zhao, Zirui Jia, Jinkun Liu, Yan Zhang, Guanglei Wu, Pengfei Yin. Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers[J]. Nano-Micro Letters, 2024, 16(1): 006 Copy Citation Text show less
    References

    [1] H.L. Lv, Y.X. Yao, S.C. Li, G.L. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023).

    [2] Y.L. Wu, D. Lan, J.W. Ren, S.J. Zhang, A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 36, 101178 (2023).

    [3] Y.Q. Guo, K.P. Ruan, G.S. Wang, J.W. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68(11), 1195–1212 (2023).

    [4] C. Pan, K.C. Kou, Y. Zhang, Z.Y. Li, G.L. Wu, Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B Eng. 153, 1–8 (2018).

    [5] Y.L. Zhang, J. Kong, J.W. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67(14), 1413–1415 (2022).

    [6] C. Pan, K.C. Kou, Q. Jia, Y. Zhang, G.L. Wu et al., Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B Eng. 111, 83–90 (2017).

    [7] H.X. Zhang, B.B. Wang, A.L. Feng, N. Zhang, Z.R. Jia et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 167, 690–699 (2019).

    [8] L.Y. Yu, Q.Q. Zhu, Z.Q. Guo, Y.H. Cheng, Z.R. Jia et al., Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 170, 129–139 (2024).

    [9] D. Lan, Y. Wang, Y.Y. Wang, X.F. Zhu, H.F. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2024).

    [10] Z.G. Gao, B.H. Xu, M.L. Ma, A.L. Feng, Y. Zhang et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. Part B Eng. 179, 107417 (2019).

    [11] H.X. Zhang, Z.R. Jia, A.L. Feng, Z.H. Zhou, L. Chen et al., In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 199, 108261 (2020).

    [12] Y. Wang, X. Gao, C.H. Lin, L.Y. Shi, X.H. Li et al., Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 785, 765–773 (2019).

    [13] J.L. Liu, H.S. Liang, Y. Zhang, G.L. Wu, H.J. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B Eng. 176, 107240 (2019).

    [14] M. Wu, A.K. Darboe, X.S. Qi, R. Xie, S.J. Qin et al., Optimization, selective and efficient production of CNTs/CoxFe3-xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 8, 11936–11949 (2020).

    [15] H.X. Zhang, Z.R. Jia, A.L. Feng, Z.H. Zhou, C.H. Zhang et al., Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 19, 42–45 (2020).

    [16] Y. Li, Y. Qing, W. Li, M. Zong, F. Luo, Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 4, 1027–1038 (2021).

    [17] Q.Q. Liang, L. Wang, X.S. Qi, Q. Peng, X. Gong et al., Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 147, 37–46 (2023).

    [18] T. Gao, H. Rong, K.H. Mahmoud, J. Ruan, S.M. El-Bahy et al., Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 1158–1167 (2022).

    [19] L.L. Xiang, X.S. Qi, Y.C. Rao, L. Wang, X. Gong et al., A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 34, 101030 (2023).

    [20] J. Guo, Z.R. Chen, X. Li, S.H. Xi, W. Abdul et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022).

    [21] Y.L. Zhang, K.P. Ruan, K. Zhou, J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023).

    [22] Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023).

    [23] T.M. Jia, X.S. Qi, L. Wang, J.L. Yang, X. Gong et al., Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: an effective strategy to achieve tunable and boosted microwave absorption. Carbon 206, 364–374 (2023).

    [24] W. Wang, D. Liu, H. Cheng, T. Cao, Y. Li et al., Structural design and broadband radar absorbing performance of multi-layer patch using carbon black. Adv. Compos. Hybrid Mater. 5, 3137–3145 (2022).

    [25] N. Wu, B. Zhao, J. Liu, Y. Li, Y. Chen et al., MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 4, 707–715 (2021).

    [26] X.L. Cao, X.H. Liu, J.H. Zhu, Z.R. Jia, J.K. Liu et al., Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 634, 268–278 (2023).

    [27] J.X. Xiao, X.S. Qi, X. Gong, Q. Peng, Y.L. Chen et al., Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 15, 7778–7787 (2022).

    [28] C. Li, X.S. Qi, X. Gong, Q. Peng, Y.L. Chen et al., Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 15, 6761–6771 (2022).

    [29] L.F. Sun, Q.Q. Zhu, Z.R. Jia, Z.Q. Guo, W.R. Zhao et al., CrN attached multicomponent carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 208, 1–9 (2023).

    [30] F. Luo, D.Q. Liu, T.S. Cao, H.F. Cheng, J.C. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4, 591–601 (2021).

    [31] W. Wang, X. Deng, D. Liu, F. Luo, H. Cheng et al., Broadband radar-absorbing performance of square-hole structure. Adv. Compos. Hybrid Mater. 5, 525–535 (2022).

    [32] T.Q. Hou, J.W. Wang, T.T. Zheng, Y. Liu, G.L. Wu et al., Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 2303463 (2023).

    [33] S.J. Zhang, B. Cheng, Z.R. Jia, Z.W. Zhao, X.T. Jin et al., The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5(3), 1658–1698 (2022).

    [34] W.J. Tian, H.Y. Zhang, X.G. Duan, H.Q. Sun, G.S. Shao et al., Porous carbons: structure-oriented design and versatile applications. Adv. Funct. Mater. 30(17), 1909265 (2020).

    [35] Y.C. Wan, M.Y. Zheng, R.T. Lv, Rational design of MO2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Mater. Today Energy 32, 101240 (2023).

    [36] X.F. Liu, N. Fechler, M. Antonietti, Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42(21), 8237–8265 (2013).

    [37] J.X. Xiao, X.S. Qi, X. Gong, Q. Peng, Y.L. Chen et al., Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 139, 137–146 (2022).

    [38] J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie et al., Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 222, 109067 (2021).

    [39] Y. Cheng, Y. Zhao, H.Q. Zhao, H.L. Lv, X.D. Qi et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019).

    [40] R.G. Mariano, K. Mckelvey, H.S. White, M.W. Kanan, Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358(6367), 1187–1192 (2017).

    [41] J.K. Liu, Z.R. Jia, Y.H. Dong, J.J. Li, X.L. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022).

    [42] X. Zhao, W. Cai, Y. Yang, X.D. Song, Z. Neale et al., MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018).

    [43] P. Ge, H.S. Hou, C.E. Banks, C.W. Foster, S.J. Li et al., Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 12, 310–323 (2018).

    [44] Y. Wu, L. Chen, Y.X. Han, P.B. Liu, H.H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023).

    [45] Y.X. Han, M.K. He, J.W. Hu, P.B. Liu, Z.W. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023).

    [46] Y.C. Zhang, S.T. Gao, B.L. Xia, J. He, F. Wei et al., Coal gasification fine slag doped with Fe3O4: High-performance electromagnetic-wave absorbers. J. Magn. Magn. Mater. 580, 170916 (2023).

    [47] X.K. Lu, X. Li, W.J. Zhu, H.L. Xu, Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption. Carbon 191, 600–609 (2022).

    [48] M. Zhu, Y.T. Lei, H. Wu, L. Kong, H.L. Xu et al., Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. J. Mater. Sci. Technol. 129, 215–222 (2022).

    [49] F. Doustdar, M. Ghorbani, Zif-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr. Polym. 291, 119620 (2022).

    [50] P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021).

    [51] F. Niu, J. Yang, N. Wang, D.P. Zhang, W.L. Fan et al., MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017).

    [52] S.Y. Jeong, S. Ghosh, J.K. Kim, D.W. Kang, S.M. Jeong et al., Multi-channel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. J. Ind. Eng. Chem. 75, 100–107 (2019).

    [53] A. Apte, K. Mozaffari, F.S. Samghabadi, J.A. Hachtel, L. Chang et al., 2D electrets of ultrathin MoO2 with apparent piezoelectricity. Adv. Mater. 32(24), 2000006 (2020).

    [54] A. Eftekhari, Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 8, 1–17 (2017).

    [55] F. Zhang, Z.R. Jia, Z. Wang, C.H. Zhang, B.B. Wang et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater. Today Phys. 20, 100475 (2021).

    [56] F.Y. Zeng, M.H. Yu, W.T. Cheng, W.X. He, Y. Pan et al., Tunable surface selenization on MoO2-based carbon substrate for notably enhanced sodium-ion storage properties. Small 16(41), 2001905 (2020).

    [57] L.H. Meng, Y. Yao, J. Liu, Z. Wang, D. Qian et al., MoSe2 nanosheets as a functional host for lithium-sulfur batteries. J. Energy Chem. 47, 241–247 (2020).

    [58] T.L. Xiong, J. Jia, Z.Q. Wei, L.L. Zeng, Y.Q. Deng et al., N-doped carbon-wrapped MoxC heterophase sheets for high-efficiency electrochemical hydrogen production. Chem. Eng. J. 358, 362–368 (2018).

    [59] M.L. Wang, Z.T. Sun, H.N. Ci, Z.X. Shi, L. Shen et al., Identifying the evolution of selenium-vacancy-modulated MoSe2 precatalyst in lithium-sulfur chemistry. Angew. Chem. Int. Ed. 60(46), 24558–24565 (2021).

    [60] T.B. Zhao, Z.R. Jia, Y. Zhang, G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 19(6), 2206323 (2023).

    [61] X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2019).

    [62] C.X. Wang, Y. Liu, Z.R. Jia, W.R. Zhao, G.L. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15(1), 13 (2023).

    [63] M. Chang, Q.Y. Li, Z.R. Jia, W.R. Zhao, G.L. Wu, Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 148, 150–170 (2023).

    [64] S.T. Gao, Y.C. Zhang, X.Z. Zhang, F.C. Jiao, T. Liu et al., Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J. Alloys Compd. 952, 170016 (2023).

    [65] S.T. Gao, Y.C. Zhang, J. He, X.Z. Zhang, F.C. Jiao et al., Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int. 49(11), 17554–17565 (2023).

    [66] X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019).

    [67] Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022).

    [68] T.T. Pajkossy, R. Jurczakowski, Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 1(1), 53–58 (2017).

    [69] Z.R. Jia, X.Y. Zhang, Z. Gu, G.L. Wu, MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 6(1), 28 (2023).

    [70] S. Zhang, Z.R. Jia, Y. Zhang, G.L. Wu, Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 16(2), 3395–3407 (2023).

    [71] C.B. Liang, H. Qiu, Y.L. Zhang, Y.Q. Liu, J.W. Gu, External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 68, 1938 (2023).

    [72] S.J. Zhang, Z.R. Jia, B. Cheng, Z.W. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5(3), 2440–2460 (2022).

    [73] X.L. Cao, Z.R. Jia, D.Q. Hu, G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid Mater. 5, 1030–1043 (2022).

    [74] Y. Liu, X.H. Liu, X.Y. Eu, B.B. Wang, Z.R. Jia et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 103, 157–164 (2022).

    [75] X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, X.H. Liu et al., Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021).

    [76] S.J. Zhang, J.Y. Li, X.T. Jin, G.L. Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: a brief review. Int. J. Miner. Metall. Mater. 30(3), 428–445 (2023).

    [77] L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres. Int. J. Miner. Metall. Mater. 30(3), 504–514 (2023).

    [78] H.X. Zhang, K.G. Sun, K.K. Sun, L. Chen, G.L. Wu, Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 242–252 (2023).

    [79] C.H. Wei, M.K. He, M.Q. Li, X. Ma, W.L. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023).

    [80] J.X. Zhou, D. Lan, F. Zhang, Y.H. Cheng, Z.R. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small (2023).

    [81] L.L. Liang, Z. Liu, L.J. Xie, J.P. Chen, H. Jia et al., Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon 171, 142–153 (2021).

    [82] X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021).

    [83] S.Z. Li, L. Ma, Z.X. Lei, A. Hua, A.Q. Zhang et al., Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion. Carbon 186, 520–529 (2021).

    [84] Y. Wang, X.C. Di, J. Chen, L.N. She, H.G. Pan et al., Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 191, 625–635 (2022).

    [85] B.R. Hinderliter, S.G. Croll, D.E. Tallman, Q. Su, G.P. Bierwagen, Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties. Electrochim. Acta 51(21), 4505–4515 (2006).

    [86] X.W. Liu, J.P. Xiong, Y.W. Lv, Y. Zuo, Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog. Org. Coat. 64(4), 497–503 (2009).

    [87] C.L. Zheng, M.Q. Ning, Z. Zou, G.G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small (2023).

    [88] X.Y. Zhang, Z.R. Jia, F. Zhang, Z.H. Xia, J.X. Zou et al., MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 610, 610–620 (2022).

    [89] X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, W. Wu et al., Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 87, 120–132 (2021).

    [90] X.F. Zhou, C.H. Zhang, M. Zhang, A.L. Feng, S.L. Qu et al., Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 127, 105627 (2019).

    [91] X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 4, 1398–1412 (2021).

    [92] J. Wang, X.Y. Lin, R.X. Zhang, Z.Y. Chu, Z.Y. Huang, Transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) and MX2-CIP composites: promising materials with high microwave absorption performance. J. Alloys Compd. 743, 26–35 (2018).

    [93] G.Q. Yu, M.Q. Ye, A.J. Han, Q.Z. Liu, Y.J. Su et al., Optimization of electromagnetic wave absorption properties of CoNi/MoSe2 composites with 3D flower-like by controlling the Co/Ni molar ratio. J. Alloys Compd. 939, 168592 (2023).

    [94] X.Y. Fu, Q. Zheng, L. Li, M.S. Cao, Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption. Carbon 197, 324–333 (2022).

    [95] A.K. Darboe, X.S. Qi, X. Gong, Q. Peng, Y.L. Chen et al., Constructing MoSe2/MoS2 and MoS2/MoSe2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance. J. Colloid Interface Sci. 624, 204–218 (2022).

    [96] X.Z. Tang, Z.J. Liao, H.L. Shi, R. Wang, J.L. Yue et al., MoSe2 nanosheets decorated Co/C fibrous composite towards high efficiency electromagnetic wave absorption. Compos. Part A Appl. Sci. Manuf. 163, 107169 (2022).

    [97] Y. Hong, Y. Liu, J.Z. Wu, Y. Li, X.H. Wu, Enhanced tunability of broadband microwave absorption for MoSe2/FeSe2 nanocomposites with a unique heterostructure. Ind. Eng. Chem. Res. 61(17), 5807–5815 (2022).

    Tianbao Zhao, Zirui Jia, Jinkun Liu, Yan Zhang, Guanglei Wu, Pengfei Yin. Multiphase Interfacial Regulation Based on Hierarchical Porous Molybdenum Selenide to Build Anticorrosive and Multiband Tailorable Absorbers[J]. Nano-Micro Letters, 2024, 16(1): 006
    Download Citation