• Photonics Insights
  • Vol. 3, Issue 1, C02 (2024)
Lei Shi1、*, Zhiyuan Che1, and Yuri Kivshar2、*
Author Affiliations
  • 1Department of Physics, Fudan University, Shanghai, China
  • 2Research School of Physics, Australian National University, Canberra, Australia
  • show less
    DOI: 10.3788/PI.2024.C02 Cite this Article Set citation alerts
    Lei Shi, Zhiyuan Che, Yuri Kivshar. Embarking on a skyrmion odyssey[J]. Photonics Insights, 2024, 3(1): C02 Copy Citation Text show less
    References

    [1] Y. Shen et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics, 18, 15(2024).

    [2] S. Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993(2018).

    [3] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650(2019).

    [4] J. C. Maxwell. XXV. On physical lines of force. Philos. Mag., 21, 161(1861).

    [5] W. Thomson. II. On vortex atoms. Philos. Mag., 34, 15(1867).

    [6] T. H. R. Skyrme. A non-linear field theory. Proc. R. Soc. A, 260, 127(1961).

    [7] I. J. R. Aitchison. Tony Skyrme and the origins of skyrmions(2020).

    [8] Z. F. Ezawa. Quantum Hall Effects: Recent Theoretical and Experimental Developments(2013).

    [9] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., 5, 1252(1964).

    [10] A. N. Bogdanov, C. Panagopoulos. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys., 2, 492(2020).

    [11] J. M. Kosterlitz, D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys., 6, 1181(1973).

    [12] A. N. Bogdanov, D. A. Yablonskii. Thermodinamically stable “vortices” inmagnetically ordered crystals. The mixed states of magnets. Sov. Phys JETP, 68, 101(1989).

    [13] U. K. Roessler, A. N. Bogdanov, C. Pfleiderer. Spontaneous skyrmion ground states in magnetic metals. Nature, 442, 797(2006).

    [14] S. Mühlbauer et al. Skyrmion lattice in a chiral magnet. Science, 323, 915(2009).

    [15] C. Pappas et al. Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett., 102, 197202(2009).

    [16] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899(2013).

    [17] T. J. Davis et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [18] Y. Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616(2020).

    [19] S. Gao et al. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [20] D. Sugic et al. Particle-like topologies in light. Nat. Commun., 12, 6785(2021).

    [21] A. Zdagkas et al. Observation of toroidal pulses of light. Nature Photonics, 16, 523(2022).

    [22] X. Lei et al. Photonic spin lattices: Symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [23] I. Nape et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538(2022).

    [24] Y. Shen, C. Rosales-Guzmán. Nonseparable states of light: from quantum to classical. Laser Photon. Rev., 16, 2100533(2022).

    [25] J.-S. B. Tai et al. Field-controled dynamics of skyrmions and monopoles. Sci. Adv., 10, eadj9373(2024).

    [26] Y. Yang et al. Acoustic-driven magnetic skyrmion motion. Nat. Commun., 15, 1018(2024).

    [27] A. Karnieli et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [28] C. Wan et al. Scalar optical hopfions. eLight, 2, 22(2022).

    [29] C. Guo et al. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    Lei Shi, Zhiyuan Che, Yuri Kivshar. Embarking on a skyrmion odyssey[J]. Photonics Insights, 2024, 3(1): C02
    Download Citation