• Matter and Radiation at Extremes
  • Vol. 3, Issue 6, 293 (2018)
D. Wu1,2,*, W. Yu1, Y.T. Zhao2, S. Fritzsche3,4, and X.T. He5
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, 201800 Shanghai, China
  • 2College of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • 3Helmholtz Institute Jena, D-07743 Jena, Germany
  • 4Theoretisch-Physikalisches Institut, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
  • 5Key Laboratory of HEDP of the Ministry of Education, CAPT, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
  • show less
    DOI: Cite this Article
    D. Wu, W. Yu, Y.T. Zhao, S. Fritzsche, X.T. He. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6): 293 Copy Citation Text show less
    References

    [1] C. Wang, X.-T. He, P. Zhang, Ab initio simulations of dense helium plasmas, Phys. Rev. Lett. 106 (2011), 145002.

    [2] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.

    [3] T.Z. Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, et al., Proposed double-layer target for the generation of high-quality laseraccelerated ion beams, Phys. Rev. Lett. 89 (2002), 175003.

    [4] Boris Yu. Sharkov, Dieter H.H. Hoffmann, Alexander A. Golubev, Yongtao Zhao, High energy density physics with intense ion beams, Matter Radiat. Extr. 1 (2016) 28.

    [5] J. Magill, H. Schwoerer, F. Ewald, J. Galy, R. Schenkel, et al., Laser transmutation of iodine-129, Appl. Phys. B 77 (2003) 387.

    [6] E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering, Energy Convers. Manage. 77 (2014) 558.

    [7] O.J. Pike, F. Mackenroth, E.G. Hill, S.J. Rose, A photonCphoton collider in a vacuum hohlraum, Nat. Photon. 8 (2014) 434.

    [8] B.S. Paradkar, M.S. Wei, T. Yabuuchi, R.B. Stephens, M.G. Haines, et al., Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities, Phys. Rev. E 83 (2011), 046401.

    [9] B.S. Paradkar, S.I. Krasheninnikov, F.N. Beg, Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction, Phys. Plasmas 19 (2012), 060703.

    [10] S.I. Krasheninnikov, Stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well, Phys. Plasmas 21 (2014), 104510.

    [11] D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, Identifying the source of super-high energetic electrons in the presence of pre-plasma in lasermatter interaction at relativistic intensities, Nucl. Fusion 57 (2017), 016007.

    [12] D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, The controllable superhigh energetic electrons by external magnetic fields at relativistic lasersolid interactions in the presence of large scale pre-plasmas, Phys. Plasmas 23 (2016), 123116.

    [13] D. Wu, S.X. Luan, J.W. Wang, W. Yu, J.X. Gong, et al., The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas, Plasma Phys. Control. Fusion 59 (2017), 065004.

    [14] S.M. Weng, Z.M. Sheng, M. Murakami, M. Chen, M. Liu, et al., Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition, Matter Radiat. Extr. 3 (2018) 28.

    [15] D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations, Phys. Rev. E 95 (2017), 023208.

    [16] D. Wu, B. Qiao, C. McGuffey, X.T. He, F.N. Beg, Generation of highenergy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses, Phys. Plasmas 21 (2014), 123118.

    [17] D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations, Phys. Rev. E 95 (2017), 023207.

    [18] K. Nanbu, S. Yonemura, Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle, J. Comput. Phys. 145 (1998) 639.

    [19] Y. Sentoku, A.J. Kemp, Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents, J. Comput. Phys. 227 (2008) 6846.

    [20] P. Leblanc, Y. Sentoku, Scaling of resistive guiding of laser-driven fastelectron currents in solid targets, Phys. Rev. E 89 (2014), 023109.

    [21] Y. Sentoku, E. dHumieres, L. Romagnani, P. Audebert, J. Fuchs, Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields, Phys. Rev. Lett. 107 (2011), 135005.

    [22] L.G. Huang, T. Kluge, T.E. Cowan, Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses, Phys. Plasmas 23 (2016), 063112.

    [23] F. Zamponi, A. Lubcke, T. Kampfer, I. Uschmann, E. Forster, et al., Directional bremsstrahlung from a Ti laser-produced X-ray source at relativistic intensities in the 3C12 keV range, Phys. Rev. Lett. 105 (2010), 085001.

    [24] Igor V. Sokolov, Natalia M. Naumova, John A. Nees, Gerard A. Mourou, Victor P. Yanovsky, Radiation back-reaction in relativistically strong and QED-strong pulsed laser fields, Phys. Plasmas 16 (2009), 093115.

    [25] D. Wu, B. Qiao, X.T. He, The radiation reaction effects in the ultraintense and ultra-short laser foil interaction regime, Phys. Plasmas 22 (2015), 093108.

    [26] F. Wan, C. Lv, M. Jia, H. Sang, B.S. Xie, Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser and plasmas, Eur. Phys. J. D 71 (2017) 236.

    [27] J.D. Jackson, Classical Electrodynamics, Wiley & Sons, New York, 1999.

    [28] Zheng Gong, Ronghao Hu, Yinren Shou, Bin Qiao, Chiaer Chen, et al., Radiation reaction induced spiral attractors in ultra-intense colliding laser beams, Matter Radiat. Extr. 1 (2016) 308.

    [29] H. Xu, W.W. Chang, H.B. Zhuo, L.H. Cao, Z.W. Yue, Parallel programming of 2(1/2)-dimensional PIC under distributed-memory parallel environments, Chin. J. Comput. Phys. 19 (2002) 305.

    [30] Qing Jia, Hong-bo Cai, Wei-wu Wang, Shao-ping Zhu, Z.M. Sheng, et al., Effects of the background plasma temperature on the current filamentation instability, Phys. Plasmas 20 (2013), 032113.

    [31] S.V. Bulanov, T. Zh. Esirkepov, M. Kando, F. Pegoraro, S. Bulanov, et al., Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability, Phys. Plasmas 19 (2012), 103105.

    [32] D. Wu, C.Y. Zheng, C.T. Zhou, X.Q. Yan, M.Y. Yu, et al., Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime, Phys. Plasmas 20 (2013), 023102.

    [33] D. Wu, C.Y. Zheng, B. Qiao, C.T. Zhou, X.Q. Yan, et al., Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses, Phys. Rev. E 90 (2014), 023101.

    [34] Z.M. Sheng, Y. Sentoku, K. Mima, J. Zhang, W. Yu, et al., Angular distributions of fast electrons, ions, and bremsstrahlung X/γ-rays in intense laser interaction with solid targets, Phys. Rev. Lett. 85 (2000) 5340.

    D. Wu, W. Yu, Y.T. Zhao, S. Fritzsche, X.T. He. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6): 293
    Download Citation