• Chinese Journal of Lasers
  • Vol. 46, Issue 4, 0404010 (2019)
Yuanhao Zhang*, Guangzhi Zhu, Jiapeng Gao, Mu Wang, Yongqian Chen, Tian Tan, Cheng Peng, and Xiao Zhu
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/CJL201946.0404010 Cite this Article Set citation alerts
    Yuanhao Zhang, Guangzhi Zhu, Jiapeng Gao, Mu Wang, Yongqian Chen, Tian Tan, Cheng Peng, Xiao Zhu. Thermo-Optical Aberration Measurement of Thin-Disk Laser Crystal Based on Spatial Carrier Interferometry[J]. Chinese Journal of Lasers, 2019, 46(4): 0404010 Copy Citation Text show less

    Abstract

    A spatial carrier interferometry method is used for the thermo-optical aberration measurement of a thin-disk laser crystal, and the influence of jet impingement cooling system on the thermo-aberration of the thin-disk laser crystal is studied in detail. The experimental results show that the distortion of the thin-disk laser crystal caused by the jet impingement cooling system is mainly spherical deformation. As the pumping power increases, the thermo-aberration of the thin-disk laser crystal becomes worse. In the center of the pumping spot, the thermo-aberration is mainly spherical and the dioptric power decreases linearly with the increase of pumping power. In contrast, on the edge of the pumping spot, the thermo-aberration is mainly aspherical and the aspherical distortion becomes worse with the increase of pumping power. The wavefront distortion curve under a pumping power of 493 W is presented and the repeatable measurement precision of its root-mean-square is 1.153 nm. The experimental results show a good consistency with the results of theoretical analysis. It provides an important reference for the design of a stable resonator and the compensation of thermo-aberration for a disk solid-state laser.
    Yuanhao Zhang, Guangzhi Zhu, Jiapeng Gao, Mu Wang, Yongqian Chen, Tian Tan, Cheng Peng, Xiao Zhu. Thermo-Optical Aberration Measurement of Thin-Disk Laser Crystal Based on Spatial Carrier Interferometry[J]. Chinese Journal of Lasers, 2019, 46(4): 0404010
    Download Citation