• Chinese Optics Letters
  • Vol. 22, Issue 11, 111301 (2024)
Kaifei Tang1, Zhenzhen Xu1, Jiahui Liu1, Wenxuan Wang2..., Zhouying Wang1, Yuxin Ma1, Ling Wang1, Pan Dai1, Zhenxing Sun1,** and Xiangfei Chen1,*|Show fewer author(s)
Author Affiliations
  • 1College of Engineering and Applied Sciences & National Laboratory of Solid-State Microstructures & Key Laboratory of Intelligent Optical Sensing and Manipulation of the Ministry of Education & Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
  • 2Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • show less
    DOI: 10.3788/COL202422.111301 Cite this Article Set citation alerts
    Kaifei Tang, Zhenzhen Xu, Jiahui Liu, Wenxuan Wang, Zhouying Wang, Yuxin Ma, Ling Wang, Pan Dai, Zhenxing Sun, Xiangfei Chen, "Large-scale parallel chaotic sources utilizing reconstruction-equivalent chirp technique," Chin. Opt. Lett. 22, 111301 (2024) Copy Citation Text show less
    References

    [1] I. Kanter, Y. Aviad, I. Reidler et al. An optical ultrafast random bit generator. Nat. Photonics, 4, 58(2010).

    [2] A. Argyris, D. Syvridis, L. Larger et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343(2005).

    [3] D. Liu, C. Sun, B. Xiong et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay. Opt. Express, 22, 5614(2014).

    [4] Y. Wang, Z. Jia, Z. Gao et al. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Opt. Express, 28, 18507(2020).

    [5] D. Chang, Z. Zhong, J. Tang et al. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express, 28, 39076(2020).

    [6] I. Reidler, Y. Aviad, M. Rosenbluh et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, 024102(2009).

    [7] J.-C. Li, J.-L. Xiao, Y.-D. Yang et al. Random bit generation based on a self-chaotic microlaser with enhanced chaotic bandwidth. Nanophotonics, 12, 4109(2023).

    [8] J.-L. Xiao, Z.-X. Xiao, C.-G. Ma et al. Self-chaotic microlasers for random bit generation. Front. Photonics, 4, 1138125(2023).

    [9] A. Argyris, M. Hamacher, K. E. Chlouverakis et al. Photonic integrated device for chaos applications in communications. Phys. Rev. Lett., 100, 194101(2008).

    [10] J. G. Wu, X. Tang, Z. M. Wu et al. Parallel generation of 10 Gbits/s physical random number streams using chaotic semiconductor lasers. Laser Phys., 22, 1476(2012).

    [11] X. Tang, Z.-M. Wu, J.-G. Wu et al. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Opt. Express, 23, 33130(2015).

    [12] X. Tang, G. Q. Xia, E. Jayaprasath et al. Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection. IEEE Access, 6, 3565(2018).

    [13] P. Li, Q. Cai, J. Zhang et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859(2019).

    [14] P. Li, K. Li, X. Guo et al. Parallel optical random bit generator. Opt. Lett., 44, 2446(2019).

    [15] K. Kim, S. Bittner, Y. Zeng et al. Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 371, 948(2021).

    [16] Y. Hu, Q. Bai, X. Tang et al. Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb. Front. Optoelectron., 16, 24(2023).

    [17] P. Dai, Z. Chen, Z. Sun et al. Wideband tunable REC-DFB laser array using thin-film heaters on the submount. Chin. Opt. Lett., 21, 011406(2023).

    [18] B. Yuan, Y. Fan, S. Ye et al. Dual-wavelength DFB laser array based on sidewall grating and lateral modulation of the grating coupling coefficient. J. Lightwave Technol., 41, 2775(2023).

    [19] A. Uchida, K. Amano, M. Inoue et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics, 2, 728(2008).

    [20] Y. Takiguchi, K. Ohyagi, J. Ohtsubo. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. Opt. Lett., 28, 319(2003).

    [21] A. Uchida, T. Heil, L. Yun et al. High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection. IEEE J. Quantum Elect., 39, 1462(2003).

    [22] Y. Shi, S. Li, X. Chen et al. High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci. Rep., 4, 7377(2015).

    [23] Y. Shi, X. Chen, Y. Zhou et al. Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift. Opt. Lett., 37, 3315(2012).

    [24] Y. Shi, S. Li, L. Li et al. Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirp technique. J. Lightwave Technol., 31, 3243(2013).

    [25] X. Chen. Precision photonic integration for future large-scale photonic integrated circuits. J. Semicond., 40, 050301(2019).

    [26] J. Lu, S. Liu, Q. Tang et al. Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision. Opt. Lett., 40, 5136(2015).

    [27] F. Y. Lin, J. M. Liu. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun., 221, 173(2003).

    [28] B. Shen, H. Shu, W. Xie et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun., 14, 4590(2023).

    [29] L. Qiao, T. Lv, Y. Xu et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett., 44, 5394(2019).

    [30] Y. Mei, Y. Ma, J. Lu et al. Multi-wavelength laser array based on REC integrated with silicon-based devices by photonic wire bonding. Proc. SPIE, 12966, 129661Y(2023).

    [31] S. Xiang, B. Wang, Y. Wang et al. 2.24-Tb/s physical random bit generation with minimal post-processing based on chaotic semiconductor lasers network. J. Lightwave Technol., 37, 3987(2019).

    [32] L. E. Bassham, A. L. Rukhin, J. Soto et al. SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.(2010).

    Kaifei Tang, Zhenzhen Xu, Jiahui Liu, Wenxuan Wang, Zhouying Wang, Yuxin Ma, Ling Wang, Pan Dai, Zhenxing Sun, Xiangfei Chen, "Large-scale parallel chaotic sources utilizing reconstruction-equivalent chirp technique," Chin. Opt. Lett. 22, 111301 (2024)
    Download Citation