[1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).
[3] Y. Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, 1701(2014).
[4] Y. Sun et al. DeepID3: face recognition with very deep neural networks(2015).
[7] K. Bonawitz et al. Practical secure aggregation for privacy-preserving machine learning, 1175(2017).
[8] C. Gentry, S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme, 129(2011).
[9] F. Boemer et al. MP2ML: a mixed-protocol machine learning framework for private inference, 1(2020).
[10] R. Gilad-Bachrach et al. Cryptonets: applying neural networks to encrypted data with high throughput and accuracy, 201(2016).
[11] Y. Mi et al. Privacy-preserving face recognition using trainable feature subtraction, 297(2024).
[12] C. Henry, M. S. Asif, Z. Li. Privacy preserving face recognition with lensless camera, 1(2023).
[15] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1(2022).
[20] X. Zhu et al. Adaptive real-time single-pixel imaging. Opt. Lett., 49, 1065(2024).
[21] V. Boominathan et al. Recent advances in lensless imaging. Optica, 9, 1(2022).
[22] Y. Ishii, S. Sato, T. Yamashita. Privacy-aware face recognition with lensless multi-pinhole camera, 476(2020).
[26] Z. Huang et al. Multi-layer optical convolutional neural network with nonlinear activation(2024).
[30] R. Ng et al. Light field photography with a hand-held plenoptic camera(2005).
[31] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374(2017).
[32] F. Yu, V. Koltun. Multi-scale context aggregation by dilated convolutions(2015).
[33] L.-C. Chen et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs(2015).
[35] L.-C. Chen et al. Rethinking atrous convolution for semantic image segmentation(2017).
[36] L.-C. Chen et al. Encoder-decoder with atrous separable convolution for semantic image segmentation, 801(2018).
[37] F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: a unified embedding for face recognition and clustering, 815(2015).
[38] C. Szegedy et al. Inception-v4, inception-ResNet and the impact of residual connections on learning(2017).
[40] D. Yi et al. Learning face representation from scratch(2014).
[41] G. B. Huang et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments(2007).
[42] G. B. Huang, E. Learned-Miller. Labeled Faces in the Wild: Updates and New Reporting Procedures(2014).
[43] Z. Huang et al. Privacy-encrypted lensless camera for face recognition(2023).
[44] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation, 234(2015).