• Chinese Optics Letters
  • Vol. 19, Issue 7, 071902 (2021)
Lingzhi Peng1, Lihong Hong1, Baoqin Chen1, Peng He2、3、**, and Zhiyuan Li1、*
Author Affiliations
  • 1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
  • 2Guangdong Full-Spectra Laser Technology Co., Ltd., Dongguan 523808, China
  • 3Dongguan Sanhang Innovation Research Institute, Dongguan 523808, China
  • show less
    DOI: 10.3788/COL202119.071902 Cite this Article Set citation alerts
    Lingzhi Peng, Lihong Hong, Baoqin Chen, Peng He, Zhiyuan Li. Robust modal phase matching in subwavelength x-cut and z-cut lithium niobate thin-film waveguides[J]. Chinese Optics Letters, 2021, 19(7): 071902 Copy Citation Text show less
    References

    [1] L. Cai, Y. Wang, H. Hu. Low-loss waveguides in a single-crystal lithium niobate thin film. Opt. Lett., 40, 3013(2015).

    [2] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715(2015).

    [3] A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, S. Fathpour. Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation. Appl. Phys. Lett., 110, 111109(2017).

    [4] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963(2017).

    [5] C. Zhu, Y. Chen, G. Li, L. Ge, B. Zhu, M. Hu, X. Chen. Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing. Chin. Opt. Lett., 15, 091901(2017).

    [6] H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, R. M. Osgood. Helium-ion-induced radiation damage in LiNbO3 thin-film electro-optic modulators. Opt. Express, 22, 19653(2014).

    [7] W. Cheng, M. Zhang, B. Stern, M. Lipson, M. Loncar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2017).

    [8] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917(2018).

    [9] Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, J. Xu. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photon. Res., 5, 623(2017).

    [10] R. Luo, H. Jiang, H. Liang, Y. Chen, Q. Lin. Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett., 42, 1281(2017).

    [11] E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths. Opt. Express, 18, 2127(2010).

    [12] S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, T. Pertsch. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity. Appl. Phys. Lett., 103, 051117(2013).

    [13] H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, Q. Lin. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett., 113, 021104(2018).

    [14] C. Lu, B. Zhu, C. Zhu, L. Ge, Y. Liu, Y. Chen, X. Chen. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities. Chin. Opt. Lett., 17, 072301(2019).

    [15] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918(1962).

    [16] P. A. Franken, J. F. Ward. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys., 35, 23(1963).

    [17] L.-H. Hong, B.-Q. Chen, C.-Y. Hu, Z.-Y. Li. Analytical solution of second-harmonic generation in a lithium-niobate-birefringence thin-film waveguide via modal phase matching. Phys. Rev. A, 98, 023820(2018).

    [18] K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, V. Berger. Second-harmonic generation through optimized modal phase matching in semiconductor waveguides. Appl. Phys. Lett., 83, 620(2003).

    [19] E. De Luca, R. Sanatinia, M. Mensi, S. Anand, M. Swillo. Modal phase matching in nanostructured zinc-blende semiconductors for second-order nonlinear optical interactions. Phys. Rev. B, 96, 075303(2017).

    [20] L. Cai, Y. Wang, H. Hu. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun., 387, 405(2017).

    [21] G. J. Edwards, M. Lawrence. A temperature-dependent dispersion equation for congruently grown lithium niobate. Opt. Quantum Electron., 16, 373(1984).

    [22] M.-L. Ren, Z.-Y. Li. An effective susceptibility model for exact solution of second harmonic generation in general quasi-phase-matched structures. EPL, 94, 44003(2011).

    [23] M.-L. Ren, D.-L. Ma, Z.-Y. Li. Experimental demonstration of super quasi-phase matching in nonlinear photonic crystal. Opt. Lett., 36, 3696(2011).

    Data from CrossRef

    [1] Lingzhi Peng, Lihong Hong, Zhiyuan Li. Theoretical solution of second-harmonic generation in periodically poled lithium niobate and chirped periodically poled lithium niobate thin film via quasi-phase-matching. Physical Review A, 104, 053503(2021).

    Lingzhi Peng, Lihong Hong, Baoqin Chen, Peng He, Zhiyuan Li. Robust modal phase matching in subwavelength x-cut and z-cut lithium niobate thin-film waveguides[J]. Chinese Optics Letters, 2021, 19(7): 071902
    Download Citation