• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 6, 2167 (2022)
MENG Guilin1、2、*, YANG Yanfei1, WANG Wankai1、2, ZHOU Zhengqiang3, and ZHANG Junping1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    MENG Guilin, YANG Yanfei, WANG Wankai, ZHOU Zhengqiang, ZHANG Junping. Application of Clay Mineral Nanomaterials in Lithium Battery Separators and Solid-State Electrolytes[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2167 Copy Citation Text show less
    References

    [1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.

    [2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1: 16013.

    [4] YANG Y F, WANG W K, LI L X, et al. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator[J]. Journal of Materials Chemistry A, 2020, 8(7): 3692-3700.

    [5] ZENG Z H, DONG Y, YUAN S H, et al. Natural mineral compounds in energy-storage systems: development, challenges, prospects[J]. Energy Storage Materials, 2022, 45: 442-464.

    [6] YANG C H, GAO R J, YANG H M. Application of layered nanoclay in electrochemical energy: current status and future[J]. EnergyChem, 2021, 3(5): 100062.

    [8] LV P Z, LIU C Z, RAO Z H. Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707-726.

    [9] LAN Y, LIU Y Y, LI J W, et al. Natural clay-based materials for energy storage and conversion applications[J]. Advanced Science, 2021, 8(11): 2004036.

    [10] UMMARTYOTIN S, BUNNAK N, MANUSPIYA H. A comprehensive review on modified clay based composite for energy based materials[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 466-472.

    [11] BISWAS B, WARR L N, HILDER E F, et al. Biocompatible functionalisation of nanoclays for improved environmental remediation[J]. Chemical Society Reviews, 2019, 48(14): 3740-3770.

    [14] LIU F L, MA S H, REN K, et al. Mineralogical phase separation and leaching characteristics of typical toxic elements in Chinese lignite fly ash[J]. Science of the Total Environment, 2020, 708: 135095.

    [15] JEE S C, KIM M, SHINDE S K, et al. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments[J]. Applied Surface Science, 2020, 509: 145358.

    [16] SHARMA B, SUNG J S, KADAM A A, et al. Adjustable n-p-n gas sensor response of Fe3O4-HNTs doped Pd nanocomposites for hydrogen sensors[J]. Applied Surface Science, 2020, 530: 147272.

    [17] FU Q S, LIN G, CHEN X D, et al. Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries[J]. Energy Technology, 2018, 6(1): 144-152.

    [18] WU F X, LV H F, CHEN S Q, et al. Natural vermiculite enables high-performance in lithium-sulfur batteries via electrical double layer effects[J]. Advanced Functional Materials, 2019, 29(27): 1902820.

    [19] WAN T, ZOU C Z, WANG L, et al. Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels[J]. Polymer Bulletin, 2015, 72(5): 1113-1125.

    [20] ELZBIECIAK M, WODKA D, ZAPOTOCZNY S, et al. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(1): 277-283.

    [21] ELDEEB A B, BRICHKIN V N, BERTAU M, et al. Solid state and phase transformation mechanism of kaolin sintered with limestone for alumina extraction[J]. Applied Clay Science, 2020, 196: 105771.

    [22] LIU F F, CHUAN X Y. Recent developments in natural mineral-based separators for lithium-ion batteries[J]. RSC Advances, 2021, 11(27): 16633-16644.

    [23] XIONG P, ZHANG F, ZHANG X, et al. Atomic-scale regulation of anionic and cationic migration in alkali metal batteries[J]. Nature Communications, 2021, 12: 4184.

    [24] YANG Y F, LI B C, LI L X, et al. A Superlephilic/superhydrophobic and thermostable separator based on silicone nanofilaments for Li metal batteries[J]. iScience, 2019, 16: 420-432.

    [25] HUANG X Z, HE R, LI M, et al. Functionalized separator for next-generation batteries[J]. Materials Today, 2020, 41: 143-155.

    [26] KIM M, KIM J K, PARK J H. Clay nanosheets in skeletons of controlled phase inversion separators for thermally stable Li-ion batteries[J]. Advanced Functional Materials, 2015, 25(22): 3399-3404.

    [27] SONG Q Q, LI A J, SHI L, et al. Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries[J]. Energy Storage Materials, 2019, 22: 48-56.

    [28] XU H, LI D N, LIU Y, et al. Preparation of halloysite/polyvinylidene fluoride composite membrane by phase inversion method for lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 790: 305-315.

    [29] DYARTANTI E R, PURWANTO A, WIDIASA I N, et al. Ionic conductivity and cycling stability improvement of PVDF/nano-clay using PVP as polymer electrolyte membranes for LiFePO4 batteries[J]. Membranes, 2018, 8(3): 36.

    [30] HE C F, LIU J Q, CUI J Q, et al. A gel polymer electrolyte based on polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery[J]. Solid State Ionics, 2018, 315: 102-110.

    [31] DENG C H, JIANG Y H, FAN Z Y, et al. Sepiolite-based separator for advanced Li-ion batteries[J]. Applied Surface Science, 2019, 484: 446-452.

    [32] WANG S, ZHANG D L, SHAO Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery[J]. Carbohydrate Polymers, 2019, 214: 328-336.

    [33] ZHAO H J, KANG W M, DENG N P, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chemical Engineering Journal, 2020, 384: 123312.

    [34] ZHAI Y Y, WANG X W, CHEN Y F, et al. Multiscale-structured polyvinylidene fluoride/polyacrylonitrile/vermiculite nanosheets fibrous membrane with uniform Li+ flux distribution for lithium metal battery[J]. Journal of Membrane Science, 2021, 621: 118996.

    [35] FANG C J, YANG S L, ZHAO X F, et al. Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries[J]. Materials Research Bulletin, 2016, 79: 1-7.

    [36] SHUBHA N, PRASANTH R, HOON H H, et al. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)-layered clay nanocomposite fibrous membranes for lithium ion batteries[J]. Materials Research Bulletin, 2013, 48(2): 526-537.

    [37] NUNES-PEREIRA J, KUNDU M, GREN A, et al. Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance[J]. Composites Part B: Engineering, 2016, 96: 94-102.

    [38] NUNES-PEREIRA J, LOPES A C, COSTA C M, et al. Porous membranes of montmorillonite/poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators[J]. Electroanalysis, 2012, 24(11): 2147-2156.

    [39] ZHAO J Y, CHEN D J, BOATENG B, et al. Atomic interlamellar ion path in polymeric separator enables long-life and dendrite-free anode in lithium ion batteries[J]. Journal of Power Sources, 2020, 451: 227773.

    [40] RAJA M, KUMAR T P, SANJEEV G, et al. Montmorillonite-based ceramic membranes as novel lithium-ion battery separators[J]. Ionics, 2014, 20(7): 943-948.

    [41] LI J, SONG G C, YU J R, et al. Preparation of solution blown polyamic acid nanofibers and their imidization into polyimide nanofiber mats[J]. Nanomaterials, 2017, 7(11): 395.

    [42] TIAN L L, XIONG L, HUANG C, et al. Gel hybrid copolymer of organic palygorskite and methyl methacrylate electrolyte coated onto celgard 2325 applied in lithium ion batteries[J]. Journal of Applied Polymer Science, 2019, 136(38): 47970.

    [43] XIE Y, CHEN X F, HAN K, et al. Natural halloysite nanotubes-coated polypropylene membrane as dual-function separator for highly safe Li-ion batteries with improved cycling and thermal stability[J]. Electrochimica Acta, 2021, 379: 138182.

    [44] LIU Y, JIANG Y S, LI F F, et al. Pore structure control of expanded dickite and its application as a clay coating layer on cross-linked nonwoven fabrics for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(6): A1082-A1091.

    [45] LI D N, XU H, LIU Y, et al. Fabrication of diatomite/polyethylene terephthalate composite separator for lithium-ion battery[J]. Ionics, 2019, 25(11): 5341-5351.

    [46] LI D N, LI Y, YANG K, et al. A porous diatomite ceramic separator for lithium ion batteries[J]. New Journal of Chemistry, 2021, 45(35): 15840-15850.

    [47] HUANG C H, JI H, GUO B, et al. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators[J]. Cellulose, 2019, 26(11): 6669-6681.

    [48] CARTER M, PAREKH M H, TOMAR V, et al. Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries[J]. Applied Clay Science, 2021, 208: 106111.

    [49] YANG Y F, WANG W K, ZHANG J P. A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries[J]. Materials Today Energy, 2020, 16: 100420.

    [50] GUO J L, ZHANG Y, FU S X, et al. Sepiolite-assisted separator modification process for high-voltage LiNi0.5Mn1.5O4 batteries and the influence on electrodes[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11117-11127.

    [51] XU R, SUN Y Z, WANG Y F, et al. Two-dimensional vermiculite separator for lithium sulfur batteries[J]. Chinese Chemical Letters, 2017, 28(12): 2235-2238.

    [52] YANG Y F, ZHANG J P. Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current density and cycling capacity[J]. Energy Storage Materials, 2021, 37: 135-142.

    [53] AHN W, LIM S N, LEE D U, et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9461-9467.

    [54] YANG Y F, ZHANG J P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators[J]. Advanced Energy Materials, 2018, 8(25): 1801778.

    [55] WANG W K, YANG Y F, LUO H M, et al. A separator based on natural illite/smectite clay for highly stable lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 576: 404-411.

    [56] WANG W K, YANG Y F, LUO H M, et al. Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures[J]. Journal of Colloid and Interface Science, 2022, 614: 593-602.

    [57] SUN W H, SUN X G, AKHTAR N, et al. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 364-374.

    [58] KWON Y M, KIM J, CHO K Y, et al. Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li-S batteries[J]. Journal of Energy Chemistry, 2021, 60: 334-340.

    [59] YANG M, NAN J, CHEN W, et al. Interfacial engineering of polypropylene separator with outstanding high-temperature stability for highly safe and stable lithium-sulfur batteries[J]. Electrochemistry Communications, 2021, 125: 106971.

    [60] ZENG G F, LIU Y P, CHEN D J, et al. Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries[J]. Advanced Energy Materials, 2021, 11(44): 2102058.

    [61] LI Q C, SONG Y Z, XU R Z, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano, 2018, 12(10): 10240-10250.

    [63] ESER N, NAL M, ELIK M, et al. Preparation and characterization of polymethacrylamide/halloysite composites[J]. Polymer Composites, 2020, 41(3): 893-899.

    [64] NI X M, LI Z H, WANG Y B. Adsorption characteristics of anionic surfactant sodium dodecylbenzene sulfonate on the surface of montmorillonite minerals[J]. Frontiers in Chemistry, 2018, 6: 390.

    [65] YAO P C, ZHU B, ZHAI H W, et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density[J]. Nano Letters, 2018, 18(10): 6113-6120.

    [66] MEJA A, DEVARAJ S, GUZMN J, et al. Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers-a feasibility study in lithium metal polymer batteries[J]. Journal of Power Sources, 2016, 306: 772-778.

    [67] XU H L, YE W, WANG Q R, et al. An in situ photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9826-9836.

    [68] FENG J W, AO X H, LEI Z W, et al. Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries[J]. Electrochimica Acta, 2020, 340: 135995.

    [69] WANG H Y, ZHANG S S, ZHU M, et al. Remarkable heat-resistant halloysite nanotube/polyetherimide composite nanofiber membranes for high performance gel polymer electrolyte in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 808: 303-310.

    [70] ZHU M, LAN J L, TAN C Y, et al. Degradable cellulose acetate/polylactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(31): 12136-12143.

    [71] WANG Y, LI X Y, QIN Y Y, et al. Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries[J]. Nano Energy, 2021, 90: 106490.

    [72] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047.

    [73] PORTHAULT H, CALBERG C, AMIRAN J, et al. Development of a thin flexible Li battery design with a new gel polymer electrolyte operating at room temperature[J]. Journal of Power Sources, 2021, 482: 229055.

    [74] CHEN-YANG Y W, CHEN Y T, CHEN H C, et al. Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery[J]. Polymer, 2009, 50(13): 2856-2862.

    [75] CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931.

    [76] TANG W J, TANG S, ZHANG C J, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets[J]. Advanced Energy Materials, 2018, 8(24): 1800866.

    [77] TANG W J, TANG S, GUAN X Z, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials[J]. Advanced Functional Materials, 2019, 29(16): 1900648.

    [78] LIN Y, WANG X M, LIU J, et al. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017, 31: 478-485.

    [79] ZHAI P F, PENG N, SUN Z Y, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2020, 8(44): 23344-23353.

    MENG Guilin, YANG Yanfei, WANG Wankai, ZHOU Zhengqiang, ZHANG Junping. Application of Clay Mineral Nanomaterials in Lithium Battery Separators and Solid-State Electrolytes[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2167
    Download Citation