• Chinese Journal of Lasers
  • Vol. 48, Issue 7, 0704002 (2021)
Xutong Li1、2, Xiaoping Ouyang1、*, Xuejie Zhang1, Zhan Li1, Liangze Pan1, Yingming Xu1, Lin Yang1, Baoqiang Zhu1, Jian Zhu3, and Jianqiang Zhu1
Author Affiliations
  • 1Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing, 100049, China
  • 3Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL202148.0704002 Cite this Article Set citation alerts
    Xutong Li, Xiaoping Ouyang, Xuejie Zhang, Zhan Li, Liangze Pan, Yingming Xu, Lin Yang, Baoqiang Zhu, Jian Zhu, Jianqiang Zhu. Single Calibration Technique of Autocorrelator Based on a Flat Crystal[J]. Chinese Journal of Lasers, 2021, 48(7): 0704002 Copy Citation Text show less
    Single calibration optical path diagram of picosecond autocorrelator based on flat crystal
    Fig. 1. Single calibration optical path diagram of picosecond autocorrelator based on flat crystal
    Theoretical CCD signal distribution in the calibration experiment
    Fig. 2. Theoretical CCD signal distribution in the calibration experiment
    Analysis of the deviation of the flat crystal placement angle α. (a) Deflection of flat crystal placement angle; (b) beam shift on the surface of autocorrelation crystal
    Fig. 3. Analysis of the deviation of the flat crystal placement angle α. (a) Deflection of flat crystal placement angle; (b) beam shift on the surface of autocorrelation crystal
    Variation curve of relative error δ with deflection angle α
    Fig. 4. Variation curve of relative error δ with deflection angle α
    Experimental data analysis. (a) Autocorrelation signal detected on the CCD; (b) normalized longitudinal integrated intensity
    Fig. 5. Experimental data analysis. (a) Autocorrelation signal detected on the CCD; (b) normalized longitudinal integrated intensity
    CCD longitudinal integral signal strength during calibration with different methods
    Fig. 6. CCD longitudinal integral signal strength during calibration with different methods
    Relative error δ /%2510
    Δh /mm0.020.050.10
    Δn0.0290.0730.145
    Δα /(°)16.626.237.2
    Table 1. Amount of change in the thickness h, refractive index n, deflection angle α of the flat crystal (the relative error of time resolution is 2%,5%,10%)
    i123456
    hi /mm1.0201.0201.0201.0191.0211.019
    Δi=(hi-h¯) /mm000-0.0010.001-0.001
    Table 2. Measurement data of thickness h of flat crystal
    Calibration methodOptical path retarderDiscrimination rate boardFlat crystal
    Time resolution /(fs·pixel-1)214.27208.00217.88
    Relative uncertainty at P=0.95 /%1.426.691.50
    Uncertainty at P=0.95 /(fs·pixel-1)3.0414.483.26
    Table 3. Statistics of time resolution calibration results of the three calibration methods
    Calibration methodOptical path retarderDiscrimination rate boardFlat crystal
    Single calibrationNoYesYes
    Light sourceFemto/picosecondAnyFemto/picosecond
    Calibration measurementNoNoYes
    Device placement requirementsNoClose to the nonlinear crystalNo
    Table 4. Performance comparison of three calibration methods
    Xutong Li, Xiaoping Ouyang, Xuejie Zhang, Zhan Li, Liangze Pan, Yingming Xu, Lin Yang, Baoqiang Zhu, Jian Zhu, Jianqiang Zhu. Single Calibration Technique of Autocorrelator Based on a Flat Crystal[J]. Chinese Journal of Lasers, 2021, 48(7): 0704002
    Download Citation