• Chinese Optics Letters
  • Vol. 19, Issue 12, 121405 (2021)
Guang Yang1, Haosen Shi1、*, Yuan Yao1、**, Hongfu Yu1, Yanyi Jiang1, Albrecht Bartels2, and Longsheng Ma1
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Novanta Europe GmbH, Garching 85748, Germany
  • show less
    DOI: 10.3788/COL202119.121405 Cite this Article Set citation alerts
    Guang Yang, Haosen Shi, Yuan Yao, Hongfu Yu, Yanyi Jiang, Albrecht Bartels, Longsheng Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser[J]. Chinese Optics Letters, 2021, 19(12): 121405 Copy Citation Text show less
    References

    [1] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279(2006).

    [2] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297(2006).

    [3] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett., 84, 5102(2000).

    [4] A. Schliesser, M. Brehm, F. Keilmann, D. W. van der Weide. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express, 13, 9029(2005).

    [5] A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz. Attosecond control of electronic processes by intense light fields. Nature, 421, 611(2003).

    [6] M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, A. Manescau. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc., 380, 839(2007).

    [7] T. Nakamura, J. D. Rodriguez, H. Leopardi, J. A. Sherman, T. M. Fortier, X. Xie, J. C. Campbell, W. F. McGrew, X. Zhang, Y. S. Hassan, D. Nicolodi, K. Beloy, A. D. Ludlow, S. A. Diddams, F. Quinlan. Coherent optical clock down-conversion for microwave frequencies with 10–18 instability. Science, 368, 889(2020).

    [8] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photon., 5, 425(2011).

    [9] X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Haensel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, Y. L. Coq. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon., 11, 44(2017).

    [10] Y. Yao, B. Li, G. Yang, X. Chen, Y. Hao, H. Yu, Y. Jiang, L. Ma. Optical frequency synthesizer referenced to an ytterbium optical clock. Photon. Res., 9, 98(2021).

    [11] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).

    [12] T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg. Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett., 86, 4996(2001).

    [13] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233(2002).

    [14] H. Leopardi, K. Beloy, T. B. Bothwell, S. M. Brewer, S. L. Bromley, J. S. Chen, S. Diddams, R. J. Fasano, Y. S. Hassan, D. B. Hume, D. Kedar, C. J. Kennedy, I. H. Khader, D. R. Leibrandt, A. D. Ludlow, W. F. McGrew, W. R. Milner, D. Nicolodi, E. Oelker, T. E. Parker, J. M. Robinson, S. Romisch, J. A. Sherman, L. I. Sonderhouse, W. C. Swann, J. Yao, J. Ye, X. Zhang, T. M. Fortier. Measurement of the 27Al+ and 87Sr absolute optical frequencies. Metrologia, 58, 015017(2021).

    [15] M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, H. Katori. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications. C. R. Phys., 16, 489(2015).

    [16] K. Beloy, M. I. Bodine, T. Bothwell, S. M. Brewer, S. L. Bromley, J. S. Chen, J. D. Deschenesênes, S. A. Diddams, R. J. Fasano, T. M. Fortier, Y. S. Hassan, D. B. Hume, D. Kedar, C. J. Kennedy, I. Khader, A. Koepke, D. R. Leibrandt, H. Leopardi, A. D. Ludlow, W. F. McGrew, W. R. Milner, N. R. Newbury, D. Nicolodi, E. Oelker, T. E. Parker, J. M. Robinson, S. Romisch, S. A. Schäffer, J. A. Sherman, L. C. Sinclair, L. Sonderhouse, W. C. Swann, J. Yao, J. Ye, X. Zhang. Frequency ratio measurements with 18-digit accuracy using a network of optical clocks. Nature, 591, 564(2021).

    [17] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 319, 1808(2008).

    [18] S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, D. J. Wineland, J. C. Bergquist. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett., 90, 150802(2003).

    [19] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 16, 42(1991).

    [20] J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, T. Veng. All-fiber, octave-spanning supercontinuum. Opt. Lett., 28, 643(2003).

    [21] F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto. Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser. Opt. Lett., 28, 1516(2003).

    [22] F. Tauser, A. Leitenstorfer, W. Zinth. Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution. Opt. Express, 11, 594(2003).

    [23] T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann. Frequency metrology with a turnkey all-fiber system. Opt. Lett., 29, 2467(2004).

    [24] J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, S.-W. Kim. Testing of a femtosecond pulse laser in outer space. Sci. Rep., 4, 5134(2014).

    [25] M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpasinger, K. Lampmann, T. Hülsing, T. W. Hänsch, R. Holzwarth. Space-borne frequency comb metrology. Optica, 3, 1381(2016).

    [26] B. J. Pröbster, M. Lezius, O. Mandel, C. Braxmaier, R. Holzwarth. FOKUS II—Space flight of a compact and vacuum compatible dual frequency comb system. J. Opt. Soc. Am. B, 38, 932(2021).

    [27] A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, M. E. Fermann. Ultra-broadband dual-branch optical frequency comb with 10–18 instability. Optica, 5, 1070(2018).

    [28] I. Coddington, W. C. Swann, N. R. Newbury. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A, 82, 043817(2010).

    [29] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photon., 3, 351(2009).

    [30] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clock. Rev. Mod. Phys., 87, 637(2015).

    [31] M. Giunta, W. Hänsel, M. Fischer, M. Lezius, T. Udem, R. Holzwarth. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place. Nat. Photon., 14, 44(2020).

    [32] D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, F.-L. Hong. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Opt. Express, 22, 7898(2014).

    [33] C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, U. Sterr. Providing short-term stability of a 1.5-µm laser to optical clocks. IEEE Trans. Instrum. Meas., 62, 1556(2013).

    [34] H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, T. M. Fortier. Single-branch Er:fiber frequency comb for precision optical metrology with 10–18 fractional instability. Optica, 4, 879(2017).

    [35] Y. Ma, B. Xu, H. Ishii, F. Meng, Y. Nakajima, I. Matsushima, T. R. Schibli, Z. Zhang, K. Minoshima. Low-noise 750 MHz spaced ytterbium fiber frequency combs. Opt. Lett., 43, 4136(2018).

    [36] Y.-Y. Zhang, L.-L. Yan, W.-Y. Zhao, S. Meng, S.-T. Fan, L. Zhang, W.-G. Guo, S.-G. Zhang, H. F. Jiang. A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator. Chin. Phys. B, 24, 064209(2015).

    [37] D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt. Lett., 30, 2948(2005).

    [38] D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, S. A. Diddams. Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium. Phys. Rev. A, 80, 053806(2009).

    [39] L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10–19 level. Science, 303, 1843(2004).

    [40] H. Liu, G. Wang, J. Jiang, W. Tian, D. Zhang, H. Han, S. Fang, J. Zhu, Z. Wei. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti:sapphire oscillator. Chin. Opt. Lett., 18, 071402(2020).

    [41] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10−21 level. Nat. Sci. Rev., 3, 463(2016).

    [42] W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker, T. M. Fortier, A. D. Ludlow. Towards the optical second: verifying optical clocks at the SI limit. Optica, 6, 448(2019).

    [43] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).

    [44] Y. Sun, Y. Yao, Y. Hao, H. Yu, Y. Jiang, L. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).

    [45] Y. Jiang, Z. Bi, L. Robertsson, L.-S. Ma. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs. Metrologia, 42, 304(2005).

    CLP Journals

    [1] Kai Wang, Haochen Tian, Fei Meng, Baike Lin, Shiying Cao, Yihan Pi, Yan Han, Zhanjun Fang, Youjian Song, Minglie Hu. Fiber-delay-line-referenced optical frequency combs: three stabilization schemes[J]. Chinese Optics Letters, 2022, 20(2): 021204

    Data from CrossRef

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [1] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [1] 潘世烈 Pan Shilie, 张方方 Zhang Fangfang.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] Qian Cao, Zhou Tong, Lei Liu, Jialiang Wang, Kang Ying, Fufei Pang, Youzhen Gui.

    [2] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    [3] H. Shi, Y. Jiang, Y. Yao, B. Li, C. Wang, H. Yu, L. Ma.

    Guang Yang, Haosen Shi, Yuan Yao, Hongfu Yu, Yanyi Jiang, Albrecht Bartels, Longsheng Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser[J]. Chinese Optics Letters, 2021, 19(12): 121405
    Download Citation