
- Chinese Optics Letters
- Vol. 19, Issue 12, 121405 (2021)
Abstract
1. Introduction
With the advent of optical frequency combs (OFCs)[
The first generation of OFCs used Kerr-lens mode-locked Ti:sapphire lasers[
Although fiber combs have merits of robustness, they are not perfect. (1) In order to obtain enough lasing gain, commercial fiber combs[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
On the contrary, OFCs based on Ti:sapphire mode-locked lasers have moderate repetition rates from hundreds of MHz to 10 GHz[
However, easy operation and long continuous operation are the weakness of Ti:sapphire combs. Normally, Ti:sapphire mode-locked lasers are not easy to get mode-locked. Unfortunately, they lose mode locking easily due to their sensitivity to environmental perturbations, e.g., temperature variation, airflow disturbance, dust contamination, etc. As a result, it is difficult to keep a Ti:sapphire comb mode-locked for more than one day. Secondly, actuators to phase lock
In this Letter, to solve these problems, firstly, the cavity of the Ti:sapphire mode-locked laser is designed to have low dust contamination and small light misalignment, enabling the Ti:sapphire laser to keep mode-locked for more than a month, limited by the observation time. In order to stabilize
2. Experimental Setup
The mode-locked laser used in this paper is a commercial Ti:sapphire mode-locked laser pumped by a 532 nm solid-state laser (Laser Quantum, Taccor 10). The laser cavity is a ring cavity, which consists of six mirrors, as shown in Fig. 1. Five of the cavity mirrors are installed in fixed mirror mounts without adjusting knobs in order to avoid cavity misalignment, and one cavity mirror (lower left) is mounted in a motorized mirror mount. The alignment of the laser cavity is optimized with the motorized mirror mount by monitoring the laser output power. The Ti:sapphire mode-locked laser achieves automatic mode locking by controlling a motor to knock one of the cavity mirrors (lower right). As long as it is mode-locked, it outputs a pulse train with an average power of more than 2 W and a pulse duration of 30 fs. To extend the mode-locked time, the laser cavity is sealed and circulated with filtered air, preventing dust contamination on cavity mirrors and the Ti:sapphire crystal. Moreover, the Ti:sapphire crystal is shifted once in 200 h to ensure that the crystal is in excellent status. The base plate of the Ti:sapphire mode-locked laser is temperature-controlled at 23.5°C, eliminating cavity misalignment due to temperature fluctuation. Benefitting from the special laser design, the Ti:sapphire laser can keep continuously mode-locked for over a month, limited by our observation time.
Figure 1.Experimental setup of the frequency-stabilized Ti:sapphire OFC. The solid lines represent the light path, while the dashed lines represent the electrical path. PPKTP, periodically poled KTiOPO4 crystal; OBPF, optical bandpass filter; PCF, photonic crystal fiber; PD, photo detector.
To fully stabilize each comb line, two degrees of freedom need to be stabilized,
The repetition rate,
Figure 2.(a) Frequency fluctuation of fr when it is free running. (b) fceo detected at 532 nm with an RBW of 300 kHz. (c) Optical beat signals of the Ti:sapphire comb against a cavity-stabilized laser at 1064 nm (in dark wine), a 729 nm laser (Ca+ clock, in magenta), a 698 nm laser (Sr clock, in red), a 578 nm laser (Yb clock, in yellow), and an 532 nm laser (iodine optical reference, in green) with an RBW of 300 kHz.
The signal of
To fully stabilize the OFC,
The broadened spectrum output from one of the PCFs (not shown in Fig. 1) allows us to obtain beat-notes against optical atomic clocks and c.w. lasers with an SNR more than 40 dB (
The broadened spectrum output from the other PCF allows us to detect the signal of
3. Methods and Results
To extend the tuning range of
Figure 3.Logic block diagram of digital servo of fceo.
A multi-channel frequency counter (K + K Messtechnik GmbH) is employed to measure
The total locking period of the comb is about 5 days, as shown in Figs. 4(a) and 4(b). By the end of the fifth day, the room temperature was raised by 3 K, leading to a large length change of the slow PZT in order to compensate the cavity length change. This made the locking state of
Figure 4.Frequency jitters of (a) fceo and (b) fr when phase-locked to an H maser. (c) The frequency instability of fceo (purple dots) and fr (black squares).
During the locking period, the position of the wedge was adjusted 12 times, and a total of 27 data points of
In the near future, the OFC based on the Ti:sapphire laser will be improved to achieve longer frequency stabilization time. Firstly, the OFC could be enclosed in a temperature-controlled chamber to protect from room temperature fluctuation. Secondly, in order to avoid a cycle slip of
4. Conclusion
In this paper, we demonstrate a turnkey Ti:sapphire mode-locked laser with continuous mode-locking time over a month. By employing both fast actuators for wide servo bandwidth and slow actuators for large tuning range to control
References
[1] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279(2006).
[2] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297(2006).
[3] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett., 84, 5102(2000).
[4] A. Schliesser, M. Brehm, F. Keilmann, D. W. van der Weide. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express, 13, 9029(2005).
[5] A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz. Attosecond control of electronic processes by intense light fields. Nature, 421, 611(2003).
[6] M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, A. Manescau. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc., 380, 839(2007).
[7] T. Nakamura, J. D. Rodriguez, H. Leopardi, J. A. Sherman, T. M. Fortier, X. Xie, J. C. Campbell, W. F. McGrew, X. Zhang, Y. S. Hassan, D. Nicolodi, K. Beloy, A. D. Ludlow, S. A. Diddams, F. Quinlan. Coherent optical clock down-conversion for microwave frequencies with 10–18 instability. Science, 368, 889(2020).
[8] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photon., 5, 425(2011).
[9] X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Haensel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, Y. L. Coq. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon., 11, 44(2017).
[10] Y. Yao, B. Li, G. Yang, X. Chen, Y. Hao, H. Yu, Y. Jiang, L. Ma. Optical frequency synthesizer referenced to an ytterbium optical clock. Photon. Res., 9, 98(2021).
[11] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).
[12] T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg. Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett., 86, 4996(2001).
[13] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233(2002).
[14] H. Leopardi, K. Beloy, T. B. Bothwell, S. M. Brewer, S. L. Bromley, J. S. Chen, S. Diddams, R. J. Fasano, Y. S. Hassan, D. B. Hume, D. Kedar, C. J. Kennedy, I. H. Khader, D. R. Leibrandt, A. D. Ludlow, W. F. McGrew, W. R. Milner, D. Nicolodi, E. Oelker, T. E. Parker, J. M. Robinson, S. Romisch, J. A. Sherman, L. I. Sonderhouse, W. C. Swann, J. Yao, J. Ye, X. Zhang, T. M. Fortier. Measurement of the 27Al+ and 87Sr absolute optical frequencies. Metrologia, 58, 015017(2021).
[15] M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, H. Katori. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications. C. R. Phys., 16, 489(2015).
[16] K. Beloy, M. I. Bodine, T. Bothwell, S. M. Brewer, S. L. Bromley, J. S. Chen, J. D. Deschenesênes, S. A. Diddams, R. J. Fasano, T. M. Fortier, Y. S. Hassan, D. B. Hume, D. Kedar, C. J. Kennedy, I. Khader, A. Koepke, D. R. Leibrandt, H. Leopardi, A. D. Ludlow, W. F. McGrew, W. R. Milner, N. R. Newbury, D. Nicolodi, E. Oelker, T. E. Parker, J. M. Robinson, S. Romisch, S. A. Schäffer, J. A. Sherman, L. C. Sinclair, L. Sonderhouse, W. C. Swann, J. Yao, J. Ye, X. Zhang. Frequency ratio measurements with 18-digit accuracy using a network of optical clocks. Nature, 591, 564(2021).
[17] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 319, 1808(2008).
[18] S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, D. J. Wineland, J. C. Bergquist. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett., 90, 150802(2003).
[19] D. E. Spence, P. N. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 16, 42(1991).
[20] J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, T. Veng. All-fiber, octave-spanning supercontinuum. Opt. Lett., 28, 643(2003).
[21] F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto. Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser. Opt. Lett., 28, 1516(2003).
[22] F. Tauser, A. Leitenstorfer, W. Zinth. Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution. Opt. Express, 11, 594(2003).
[23] T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann. Frequency metrology with a turnkey all-fiber system. Opt. Lett., 29, 2467(2004).
[24] J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, S.-W. Kim. Testing of a femtosecond pulse laser in outer space. Sci. Rep., 4, 5134(2014).
[25] M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpasinger, K. Lampmann, T. Hülsing, T. W. Hänsch, R. Holzwarth. Space-borne frequency comb metrology. Optica, 3, 1381(2016).
[26] B. J. Pröbster, M. Lezius, O. Mandel, C. Braxmaier, R. Holzwarth. FOKUS II—Space flight of a compact and vacuum compatible dual frequency comb system. J. Opt. Soc. Am. B, 38, 932(2021).
[27] A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, M. E. Fermann. Ultra-broadband dual-branch optical frequency comb with 10–18 instability. Optica, 5, 1070(2018).
[28] I. Coddington, W. C. Swann, N. R. Newbury. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A, 82, 043817(2010).
[29] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photon., 3, 351(2009).
[30] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clock. Rev. Mod. Phys., 87, 637(2015).
[31] M. Giunta, W. Hänsel, M. Fischer, M. Lezius, T. Udem, R. Holzwarth. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place. Nat. Photon., 14, 44(2020).
[32] D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, F.-L. Hong. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Opt. Express, 22, 7898(2014).
[33] C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, U. Sterr. Providing short-term stability of a 1.5-µm laser to optical clocks. IEEE Trans. Instrum. Meas., 62, 1556(2013).
[34] H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, T. M. Fortier. Single-branch Er:fiber frequency comb for precision optical metrology with 10–18 fractional instability. Optica, 4, 879(2017).
[35] Y. Ma, B. Xu, H. Ishii, F. Meng, Y. Nakajima, I. Matsushima, T. R. Schibli, Z. Zhang, K. Minoshima. Low-noise 750 MHz spaced ytterbium fiber frequency combs. Opt. Lett., 43, 4136(2018).
[36] Y.-Y. Zhang, L.-L. Yan, W.-Y. Zhao, S. Meng, S.-T. Fan, L. Zhang, W.-G. Guo, S.-G. Zhang, H. F. Jiang. A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator. Chin. Phys. B, 24, 064209(2015).
[37] D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt. Lett., 30, 2948(2005).
[38] D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, S. A. Diddams. Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium. Phys. Rev. A, 80, 053806(2009).
[39] L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10–19 level. Science, 303, 1843(2004).
[40] H. Liu, G. Wang, J. Jiang, W. Tian, D. Zhang, H. Han, S. Fang, J. Zhu, Z. Wei. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti:sapphire oscillator. Chin. Opt. Lett., 18, 071402(2020).
[41] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10−21 level. Nat. Sci. Rev., 3, 463(2016).
[42] W. F. McGrew, X. Zhang, H. Leopardi, R. J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schäffer, J. Savory, R. C. Brown, S. Römisch, C. W. Oates, T. E. Parker, T. M. Fortier, A. D. Ludlow. Towards the optical second: verifying optical clocks at the SI limit. Optica, 6, 448(2019).
[43] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).
[44] Y. Sun, Y. Yao, Y. Hao, H. Yu, Y. Jiang, L. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).
[45] Y. Jiang, Z. Bi, L. Robertsson, L.-S. Ma. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs. Metrologia, 42, 304(2005).

Set citation alerts for the article
Please enter your email address