[1] W H Williams, J M Auerbach, M A Henesian, et al.. Optical propagation modeling for the National Ignition Facility [C]. SPIE, 2004, 5341: 66-72.
[2] M Shaw, W Williams, K Jancaitis, et al.. Performance and operational modeling of the National Ignition Facility [C]. SPIE, 2004, 5178: 194-203.
[3] M Shaw, W Williams, R House, et al.. Laser performance operations model (LPOM): A tool to automate the setup and diagnosis of the National Ignition Facility [C]. SPIE, 2005, 5867: 58671A.
[4] B J Le Garrec, O Nicolas. Laser performance operation model and its application to LIL energy and power balance [C]. Journal of Physics: Conference Series, 2008, 112: 032019.
[5] M Shaw, R House, W Williams, et al.. Laser performance operations model (LPOM): A computational system that automates the setup and performance analysis of the National Ignition Facility [C]. Journal of Physics: Conference Series, 2008, 112: 032022.
[6] O Morice. Miro: Complete modeling and software for pulse amplification and propagation in high-power laser systems [J]. Opt Engng, 2003, 42(6): 1530-1541.
[7] X Julien, A Adolf, E Bar, et al.. LIL laser performance status [C]. SPIE, 2011, 7916: 791610.
[8] Lin Zunqi. Progress of laser fusion [J]. Chinese J Lasers, 2010, 37(9): 2202-2207.
[9] Tang Shiwang, Zhu Haidong, Guo Ailin, et al.. Study of simulation and experiment of the prompt pump-induced wavefront of the four-pass amplification high power laser facility [J]. Chinese J Lasers, 2014, 41(7): 0702005.
[11] J L Peterson, P Michel, C A Thomas, et al.. The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions [J]. Physics of Plasmas, 2014, 21(7): 072712.
[12] J F Myatt, J Zhang, R W Short, et al.. Multiple-beam laser-plasma interactions in inertial confinement fusion [J]. Physics of Plasmas, 2014, 21(5): 055501.
[13] Liu Renhong, Cai Xijie, Yang Lin, et al.. Study on gain fluence curve of a laser pulse amplifier [J]. Acta Physica Sinica, 2005, 54(7): 3140-3143.
[15] O Morice, X Ribeyre, V Rivoire. Broadband computations using the miro software [C]. SPIE, 1996, 3492: 832-838.
[16] O Morice. Complete modeling and software for pulse amplification and propagation in high-power laser systems [J]. Opt Engng, 2003, 42(6): 1530-1541.
[17] Y H Chuang, L Zheng, D D Meyerhofer. Propagation of light pulses in a chirped-pulse-amplification laser [J]. IEEE J Quantum Electron, 1993, 29(1): 270-280.
[19] B R Wikins. Analogue and Iterative Methods in Computation, Simulation and Control [M]. London: Chapman and Hall, 1970.
[20] D T Pham, D Karaboga. Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks [M]. NewYork: Spinger, 1998.
[21] G P Agrwal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics [M]. Jia Dongfang, Yu Zhenhong, Transl. Beijing: Publishing House of Electronics Industry, 2002.
[23] Li Kun, Zhang Bin. Inverse problem of monochromatic third-harmonic generation [J]. Laser Technology, 2006, 30 (2): 186-188.
[24] Zhang Junyong, Sun Meizhi, Zhang Yanli, et al.. Inverse problem of frequency conversion at SG-II final optical assemble [J]. Acta Optica Sinica, 2012, 32(9): 0916003.
[26] Chen Ying, Wang Lulu, Liu Guangcan, et al.. Survey on frequency conversion of broadband high power Nd:glass laser [J]. Laser & Optoelectronics Progress, 2014, 51(2): 020005.
[27] J H Campbell, T I Suratwala. Nd-doped phosphate glasses for high-energy/high-peak-power lasers [J]. Journal of Non-Crystalline Solids, 2000, 263(1-4): 318-341.
[28] J H Campbell, T I Suratwala, C B Thorsness, et al.. Continuous melting of phosphate laser glasses [J]. Journal of Non-Crystalline Solids, 2000, 263(1-4): 342-357.
[29] C A Haynam, P J Wegner, J M Auerbach, et al.. National Ignition Facility laser performance status [J]. Appl Opt, 2007, 46(16): 3276-3303.