• Photonics Research
  • Vol. 13, Issue 2, 373 (2025)
Shujun Zheng1,†, Jiaren Tan2,†, Xianmiao Xu1, Hongjie Liu1..., Yi Yang3, Xiao Lin3 and Xiaodi Tan3,*|Show fewer author(s)
Author Affiliations
  • 1Information Photonics Research Center, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
  • 2Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
  • 3College of Photonic and Electronic Engineering, Key Laboratory of Opto-Electronic Science and for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350117, China
  • show less
    DOI: 10.1364/PRJ.540120 Cite this Article Set citation alerts
    Shujun Zheng, Jiaren Tan, Xianmiao Xu, Hongjie Liu, Yi Yang, Xiao Lin, Xiaodi Tan, "Optical polarized orthogonal matrix," Photonics Res. 13, 373 (2025) Copy Citation Text show less
    References

    [1] N. Kinoshita, T. Muroi, N. Ishii. Control of angular intervals for angle-multiplexed holographic memory. Jpn. J. Appl. Phys., 48, 03A029(2009).

    [2] L. Cao, Z. Wang, H. Zhang. Volume holographic printing using unconventional angular multiplexing for three-dimensional display. Appl. Opt., 55, 6046-6051(2016).

    [3] H. Sherif, I. Naydenova, S. Martin. Characterisation of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing. J. Opt. A, 7, 255-260(2005).

    [4] J. Li, L. Cao, X. Tan. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage. Opt. Lett., 37, 936-938(2012).

    [5] N. Yoneda, Y. Saita, T. Nomura. Binary computer-generated-hologram-based holographic data storage. Appl. Opt., 58, 3083-3090(2019).

    [6] T. Eto, M. Takabayashi, A. Okamoto. Numerical simulations on inter-page crosstalk characteristics in three-dimensional shift multiplexed self-referential holographic data storage. Jpn. J. Appl. Phys., 55, 08RD01(2016).

    [7] Z. Jin, D. Janoschka, J. Deng. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 1, 5(2021).

    [8] X. Ouyang, Y. Xu, M. Xian. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics, 15, 901-907(2021).

    [9] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [10] J. Zang, G. Kang, P. Li. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography. Opt. Lett., 42, 1377-1380(2017).

    [11] J. Zang, F. Fan, Y. Liu. Four-channel volume holographic recording with linear polarization holography. Opt. Lett., 44, 4107-4110(2019).

    [12] J. Guo, T. Wang, B. Quan. Polarization multiplexing for double images display. Opto-Electron. Adv., 2, 180029(2019).

    [13] W. D. Koek, N. Bhattacharya, J. J. M. Braat. Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt. Lett., 29, 101-103(2004).

    [14] H. Wei, L. Cao, Z. Xu. Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer. Opt. Express, 14, 5135-5142(2006).

    [15] D. Barada, T. Ochiai, T. Fukuda. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave. Opt. Lett., 37, 4528-4530(2012).

    [16] S. Zhou, L. Liu, Z. Chen. Polarization-multiplexed metaholograms with erasable functionality. J. Phys. D, 56, 155102(2023).

    [17] Z. Wang, J. Wu, L. Wu. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv. Opt. Mater., 9, 2001609(2021).

    [18] X. Lin, Q. Chen, X. Zhang. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv., 6, 230029(2023).

    [19] Q. Wang, P. Eric, Q. Yang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [20] D. Tang, Z. Shao, X. Xie. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron. Adv., 6, 220063(2023).

    [21] J. Li, X. Lu, H. Li. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation. Opto-Electron. Adv., 7, 240075(2024).

    [22] K. J. Horadam. Hadamard Matrices and Their Applications(2012).

    [23] M. Liu, W. Zhu, P. Huo. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [24] R. Wang, J. Guo, H. Leung. Orthogonal circulant structure and chaotic phase modulation based analog to information conversion. Signal Process., 144, 104-117(2018).

    [25] J. Li, M. He, T. Zheng. Two-dimensional shift-orthogonal random-interleaving phase-code multiplexing for holographic data storage. Opt. Commun., 284, 5562-5567(2011).

    [26] J. Figueroa, J. Cros, P. Viarouge. Generalized transformations for polyphase phase-Modulation motors. IEEE Trans. Energy Convers., 21, 332-341(2006).

    [27] Y. Xin, Z. Wang, G. B. Giannakis. Space-time diversity systems based on linear constellation precoding. IEEE Trans. Wireless Commun., 2, 294-309(2003).

    [28] G. Makey, Ö. Yavuz, D. K. Kesim. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics, 13, 251-256(2019).

    [29] X. Fang, H. Yang, W. Yao. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photon., 3, 015001(2021).

    [30] W. Meng, B. Li, H. Luan. Orbital angular momentum neural communications for 1-to-40 multicasting with 16-ary shift keying. ACS Photon., 10, 2799-2807(2023).

    [31] J. Wang, J. Chen, F. Yu. Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing. Nat. Commun., 15, 6284(2024).

    [32] Z. Shi, N. A. Rubin, J. Park. Nonseparable polarization wavefront transformation. Phys. Rev. Lett., 129, 167403(2022).

    [33] H. Poincaré. Theorie Mathematique de la Lumiere(1892).

    [34] R. Zhao, B. Sain, Q. Wei. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [35] K. Kuroda, Y. Matsuhashi, R. Fujimura. Theory of polarization holography. Opt. Rev., 18, 374-382(2011).

    [36] J. Wang, X. Tan, P. Qi. Linear polarization holography. Opto-Electron. Sci., 1, 210009(2022).

    [37] J. Zang, A. Wu, Y. Liu. Characteristics of volume polarization holography with linear polarization light. Opt. Rev., 22, 829-831(2015).

    [38] P. Hu, Y. Chen, J. Li. Impact of fullerene on the holographic properties of PQ/PMMA photopolymer. Compos. Sci. Technol., 221, 109335(2022).

    [39] H. T. Chen, A. K. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [40] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 1, 20(2020).

    [41] S. H. Lin, K. Y. Hsu, W. Z. Chen. Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage. Opt. Lett., 25, 451-454(2000).

    [42] Y. Chen, P. Hu, Z. Huang. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide. ACS Appl. Mater. Interfaces, 13, 27500-27512(2021).

    [43] S. H. Lin, P. Chen, C. Chuang. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. Opt. Lett., 36, 3039-3042(2011).