• Frontiers of Optoelectronics
  • Vol. 8, Issue 1, 1 (2015)
Dongwei WU, Jianjun LIU, Hao HAN, Zhanghua HAN, and Zhi HONG*
Author Affiliations
  • Centre for THz Research, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.1007/s12200-014-0431-5 Cite this Article
    Dongwei WU, Jianjun LIU, Hao HAN, Zhanghua HAN, Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Frontiers of Optoelectronics, 2015, 8(1): 1 Copy Citation Text show less
    References

    [1] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792

    [2] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    [3] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511

    [4] Chen T, Li S Y, Sun H. Metamaterials application in sensing. Sensors (Basel, Switzerland), 2012, 12(3): 2742–2765

    [5] Al-Naib I A I, Jansen C, Koch M. Thin-film sensing with planar asymmetric metamaterial resonators. Applied Physics Letters, 2008, 93(8): 083507-1–083507-3

    [6] O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W L. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795

    [7] Sun Y, Xia X, Feng H, Yang H, Gu C,Wang L. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Applied Physics Letters, 2008, 92(22): 221101-1–221101-3

    [8] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401-1–147401-4

    [9] Aydin K, Pryce I M, Atwater H A. Symmetry breaking and strong coupling in planar optical metamaterials. Optics Express, 2010, 18 (13): 13407–13417

    [10] Cao W, Singh R J, Al-Naib I A, He M X, Taylor A J, Zhang W L. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Optics Letters, 2012, 37(16): 3366–3368

    [11] Al-Naib I, Singh R, Rockstuh C, Lederer F, Delprat S, Rocheleau D, Chaker M, Ozaki T, Morandotti R. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials. Applied Physics Letters, 2012, 101(7): 071108-1–071108-4

    [12] Chen C Y, Un I W, Tai N H, Yen T J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Optics Express, 2009, 17(17): 15372–15380

    [13] Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier S A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 2009, 3(3): 643–652

    [14] Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Letters, 2005, 5(10): 2034–2038

    [15] Wang W T, Liu J J, Li X J, Han H, Hong Z. Direct fabrication of terahertz wire-grid polarizer and filter by laser induced and nonelectrolytic plating. Acta Optica Sinica, 2012, 32(12): 1231002-1–1231002-5 (in Chinese)

    [16] Wu D W, Liu J J, Li H Y, Han H, Hong Z. Fabrication of metamaterial terahertz devices by laser Induced and non-electrolytic plating with copper using semiconductor laser. Acta Optica Sinica, 2013, 33(12): 1223002-1–1223002-5 (in Chinese)

    Dongwei WU, Jianjun LIU, Hao HAN, Zhanghua HAN, Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Frontiers of Optoelectronics, 2015, 8(1): 1
    Download Citation