[1] N. Froberg, S. Henion, H. Rao. The NGI onramp test bed: reconfigurable WDM technology for next generation regional access networks. J. Lightwave Technol., 18, 1697-1708(2000).
[2] E. Agrell, M. Karlsson, A. Chraplyvy. Roadmap of optical communications. J. Opt., 18, 063002(2016).
[3] S. L. Jansen, I. Morita, T. C. Schenk. Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF. J. Lightwave Technol., 26, 6-15(2008).
[4] S. J. Savory. Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron., 16, 1164-1179(2010).
[5] Z. Liu, J.-Y. Kim, D. S. Wu. Homodyne OFDM with optical injection locking for carrier recovery. J. Lightwave Technol., 33, 34-41(2014).
[6] G. Rademacher, B. J. Puttnam, R. S. Luís. 10.66 peta-bit/s transmission over a 38-core-three-mode fiber. Optical Fiber Communication Conference, Th3H-1(2020).
[7] P. J. Winzer. Scaling optical fiber networks: challenges and solutions. Opt. Photonics News, 26, 28-35(2015).
[8] F. Hamaoka, K. Minoguchi, T. Sasai. 150.3-Tb/s ultra-wideband (S, C, and L bands) single-mode fibre transmission over 40-km using > 519 Gb/s/A PDM-128QAM signals. European Conference on Optical Communication (ECOC), 1-3(2018).
[9] T. Kobayashi, M. Nakamura, F. Hamaoka. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2017).
[10] H. Hu, F. Da Ros, M. Pu. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics, 12, 469-473(2018).
[11] J. Schröder, A. Fülöp, M. Mazur. Laser frequency combs for coherent optical communications. J. Lightwave Technol., 37, 1663-1670(2019).
[12] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).
[13] W. Liang, D. Eliyahu, V. S. Ilchenko. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).
[14] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297-1309(2006).
[15] J. Liu, A. S. Raja, M. Karpov. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).
[16] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).
[17] S. H. Lee, D. Y. Oh, Q.-F. Yang. Towards visible soliton microcomb generation. Nat. Commun., 8, 1295(2017).
[18] G. Frigenti, D. Farnesi, G. Nunzi Conti. Nonlinear optics in microspherical resonators. Micromachines, 11, 303(2020).
[19] D.-Q. Yang, J.-H. Chen, Q.-T. Cao. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light Sci. Appl., 10, 128(2021).
[20] N. Toropov, G. Cabello, M. P. Serrano. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl., 10, 42(2021).
[21] X. Jiang, A. J. Qavi, S. H. Huang. Whispering-gallery sensors. Matter, 3, 371-392(2020).
[22] H. Yang, Z.-G. Hu, Y. Lei. High-sensitivity air-coupled megahertz-frequency ultrasound detection using on-chip microcavities. Phys. Rev. Appl., 18, 034035(2022).
[23] S. A. Diddams, T. Udem, J. Bergquist. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).
[24] Z. L. Newman, V. Maurice, T. Drake. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).
[25] M.-G. Suh, Q.-F. Yang, K. Y. Yang. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).
[26] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).
[27] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[28] J. Pfeifle, V. Brasch, M. Lauermann. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).
[29] J. Pfeifle, A. Coillet, R. Henriet. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys. Rev. Lett., 114, 093902(2015).
[30] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).
[31] Y. Geng, H. Zhou, X. Han. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).
[32] T. Salgals, J. Alnis, R. Murnieks. Demonstration of a fiber optical communication system employing a silica microsphere-based OFC source. Opt. Express, 29, 10903-10913(2021).
[33] Z. Zhou, J. Wei, Y. Luo. Communications with guaranteed bandwidth and low latency using frequency-referenced multiplexing. Nat. Electron., 6, 694-702(2023).
[34] A. B. Matsko, L. Maleki. On timing jitter of mode locked Kerr frequency combs. Opt. Express, 21, 28862-28876(2013).
[35] F. Lei, Z. Ye, Ó. B. Helgason. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).
[36] D. Zou, Y. Chen, F. Li. Comparison of bit-loading DMT and pre-equalized DFT-spread DMT for 2-km optical interconnect system. J. Lightwave Technol., 37, 2194-2200(2019).
[37] W. Wang, Z. Wu, D. Zou. Training sequences design for simultaneously transceiver IQ skew estimation in coherent systems. J. Lightwave Technol., 42, 5088-5098(2024).
[38] X. Yi, Q.-F. Yang, X. Zhang. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).
[39] T. Okoshi, K. Kikuchi, A. Nakayama. Novel method for high resolution measurement of laser output spectrum. Electron. Lett., 16, 630-631(1980).
[40] T. Mukaihara, T. Kimura, H. Koshi. Narrow linewidth tunable lasers for digital coherent system. Conference on Lasers and Electro-Optics Pacific Rim, 27J1_1(2015).