• Infrared Technology
  • Vol. 44, Issue 8, 778 (2022)
Yijun ZHANG*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Yijun. Progress in Research on Semiconductor Photocathodes[J]. Infrared Technology, 2022, 44(8): 778 Copy Citation Text show less
    References

    [1] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267: 983-1000.

    [2] EINSTEIN A. On a heuristic viewpoint concerning the production and transformation of light[J]. Annalen der Physik, 1905, 17: 132-148.

    [3] SPICER W E. Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds[J]. Physical Review, 1958, 112(1):114-122.

    [4] SOMMER A H. Photoemissive Materials: Preparation, Properties and Uses[M]. New York: John Wiley & Sons, 1968: 1-4.

    [5] XIANG R, TEICHERT J. Photocathodes for high brightness photo injectors[J]. Physics Procedia, 2015, 77: 58-65.

    [6] LORUSSO A. Overview and development of metallic photocathodes prepared by laser ablation[J]. Applied Physics A, 2013, 110: 869-875.

    [7] SRINIVASAN-RAO T, FISCHER J, TSANG T. Photoemission studies on metals using picosecond ultraviolet laser pulses[J]. Journal of Applied Physics, 1991, 69(5): 3291-3296.

    [8] XIE H. Overview of the semiconductor photocathode research in China[J].Micromachines, 2021, 12(11): 1376.

    [10] CHANLEK N, HERBERT J D, JONES R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5):055110.

    [11] MARTINELLI R U, FISHER D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices[J].Proceedings of the IEEE, 1974, 62(10): 1339-1360.

    [12] Hamamatsu Photonics KK. High-speed gated I.I. unit selection guide[DB/OL]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Related/GateII_TII0006E.pdf, 2014.

    [13] REN Bin, GUO Hui, SHI Feng, et al. A theoretical and experimental evaluation of III-nitride solar-blind UV photocathode[J]. Chinese Physics B, 2017, 26(8): 088504.

    [15] SUYAMA M, NAKAMURA K. Recent progress of photocathodes for PMTs[C]//International Workshop on New Photon Detectors, 2010:PD09 (DOI: 10.22323/1.090.0013).

    [18] CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2015, 21(2): 149-164.

    [20] TRIVENI R, DOWELL D H. An Engineering Guide to Photoinjectors[M].North Charleston: Create Space Independent Publishing Platform, 2013.

    [21] RUSSELL S J. Overview of high-brightness, high-average-current photoinjectors for FELs[J]. Nuclear Instruments and Methods in Physics Research Section A, 2003, 507: 304-309.

    [22] XIANG R, ARNOLD A, BUETTIG H, et al. Cs2Te normal conducting photocathodes in the superconducting rf gun[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13(4): 043501.

    [23] KARKARE S, BOULET L, CULTRERA L, et al. Ultrabright and ultrafast III-V semiconductor photocathodes[J]. Physical Review Letters, 2014,112(9): 097601.

    [24] SINCLAIR C K, ADDERLEY P A, DUNHAM B M, et al. Development of a high average current polarized electron source with long cathode operational lifetime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10(2): 023501.

    [25] CULTRERA L, MAXSON J, BAZAROV I, et al. Photocathode behavior during high current running in the Cornell energy recovery linac photoinjector[J]. Physical Review Special Topics-Accelerators and Beams,2011, 14(12): 120101.

    [26] MUSUMECI P, NAVARRO J G, ROSENZWEIG J B, et al. Advances in bright electron sources[J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 907: 209-220.

    [27] CHANG T H P, MANKOS M, LEE K Y, et al. Multiple electron-beam lithography[J]. Microelectronic Engineering, 2001, 57: 117-135.

    [28] MACHUCA F, SUN Y, LIU Z, et al. Prospect for high brightness III–nitride electron emitter[J]. Journal of Vacuum Science & Technology B,2000, 18(6): 3042-3046.

    [29] MORISHITA H, OHSHIMA T, KUWAHARA M, et al. Resolution improvement of low-voltage scanning electron microscope by bright and monochromatic electron gun using negative electron affinity photocathode[J]. Journal of Applied Physics, 2020, 127(16): 164902.

    [30] KUWAHARA M, TAKEDA Y, SAITOH K, et al. Development of spinpolarized transmission electron microscope[C]//Journal of Physics: Conference Series, 2011, 298: 012016.

    [31] DI BONA A, SABARY F, VALERI S, et al. Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes[J]. Journal of Applied Physics, 1996, 80(5): 3024-3030.

    [32] SUBERLUCQ G. Technological challenges for high brightness photoinjectors[C]//Proceedings of EPAC, 2004: 64-68.

    [33] GAOWEI M, SINSHEIMER J, STROM D, et al. Codeposition of ultrasmooth and high quantum efficiency cesium telluride photocathodes[J]. Physical Review Accelerators and Beams, 2019, 22(7):073401.

    [34] BISERO D, VAN OERLE B M, ERNST G J, et al. High efficiency photoemission from Cs-K-Te[J]. Applied Physics Letters, 1997, 70(12):1491-1493.

    [35] VERSCHUUR J W J, VAN OERLE B M, ERNST G J, et al. Aspects of accelerator-based photoemission[J]. Nuclear Instruments and Methods in Physics Research Section B, 1998, 139: 541-545.

    [40] DOWELL D H, BETHEL S Z, FRIDDELL K D. Results from the average power laser experiment photocathode injector test[J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 356: 167-176.

    [42] LI X D, JIANG Z G, GU Q, et al. Preliminary systematic study of the temperature effect on the K-Cs-Sb photocathode performance based on the K and Cs co-evaporation[J]. Chinese Physics Letters, 2020, 37(1):012901.

    [43] DING Z, GAOWEI M, SINSHEIMER J, et al. In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary coevaporation[J]. Journal of Applied Physics, 2017, 121: 055305.

    [44] FENG J, KARKARE S, NASIATKA J, et al. Near atomically smooth alkali antimonide photocathode thin films[J]. Journal of Applied Physics,2017, 121: 044904.

    [45] SUN J, JIN M, WANG X, et al. Enhanced photoemission capability of bialkali photocathodes for 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 971:164021.

    [46] CULTRERA L, KARKARE S, LILLARD B, et al. Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector[J]. Applied Physics Letters, 2013, 103:103504.

    [47] CULTRERA L, GULLIFORD C, BARTNIK A, et al. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light[J]. Applied Physics Letters, 2016, 108: 134105.

    [54] ZHANG Yijun, ZHANG Kaimin, LI Shan, et al. Effect of excessive Cs and O on activation of GaAs (100) surface: from experiment to theory[J].Journal of Applied Physics, 2020, 128: 173103.

    [55] LIU Z, SUN Y, PETERSON S, et al. Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes[J]. Applied Physics Letters, 2008, 92: 241107.

    [56] PASTUSZKA S, TEREKHOV A S, WOLF A. ‘Stable to unstable’ transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum[J]. Applied Surface Science, 1996, 99(4): 361-365.

    [57] CHANLEK N, HERBERT J D, JONES R M, et al. High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3[J]. Journal of Physics D: Applied Physics, 2015, 48(37):375102.

    [58] LI Shan, ZHANG Yijun, ZHANG Kaimin, et al. Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs (1 0 0)-β2 (2× 4) surface:From DFT simulation to experiment[J]. Journal of Colloid and Interface Science, 2022, 613: 117-125.

    [59] SUN Y, KIRBY R E, MARUYAMA T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3[J]. Applied Physics Letters, 2009, 95: 174109.

    [60] MULHOLLAN G A, BIERMAN J C. Enhanced chemical immunity for negative electron affinity GaAs photoemitters[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1195-1197.

    [61] KURICHIYANIL N, ENDERS J, FRITZSCHE Y, et al. A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes[J]. Journal of Instrumentation, 2019, 14: P08025.

    [62] BAE J K, CULTRERA L, DIGIACOMO P, et al. Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs2Te coating[J]. Applied Physics Letters, 2018, 112: 154101.

    [63] CULTRERA L, GALDI A, BAE J K, et al. Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: trade-offs between efficiency, spin polarization, and lifetime[J]. Physical Review Accelerators and Beams, 2020, 23(2):023401.

    [64] BAE J K, GALDI A, CULTRERA L, et al. Improved lifetime of a high spin polarization superlattice photocathode[J]. Journal of Applied Physics,2020, 127: 124901.

    [65] BISWAS J, WANG E, GAOWEI M, et al. High quantum efficiency GaAs photocathodes activated with Cs, O2, and Te[J]. AIP Advances, 2021, 11:025321.

    [67] NüTZEL G, LAVOUTE P. Semi-transparent photocathode with improved absorption rate: United States: 9960004B2[P]. 2018.

    [69] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Active bialkali photocathodes on free-standing graphene substrates[J]. npj 2D Materials and Applications, 2017(1): 12.

    [70] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Quantum efficiency enhancement of bialkali photocathodes by an atomically thin layer on substrates[J]. Physica Status Solidi A, 2019, 216: 1900501.

    [71] GALDI A, BALAJKA J, DEBENEDETTI W J I, et al. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates[J]. Applied Physics Letters, 2021,118: 244101.

    [72] PARZYCK C T, GALDI A, NANGOI J K, et al. Single-crystal alkali antimonide photocathodes: high efficiency in the ultrathin limit[J]. Physical Review Letters, 2022, 128(11): 114801.

    ZHANG Yijun. Progress in Research on Semiconductor Photocathodes[J]. Infrared Technology, 2022, 44(8): 778
    Download Citation