• Chinese Journal of Lasers
  • Vol. 50, Issue 2, 0214001 (2023)
Xingyuan Zhang, Jianqiang Gu*, and Wenqiao Shi
Author Affiliations
  • Key Laboratory of Optoelectronic Information Technology, Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Center for Terahertz Waves, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202350.0214001 Cite this Article Set citation alerts
    Xingyuan Zhang, Jianqiang Gu, Wenqiao Shi. Terahertz Metasurface with Bound States in Continuum Based on Metal Split Ring Resonator[J]. Chinese Journal of Lasers, 2023, 50(2): 0214001 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Pawar A Y, Sonawane D D, Erande K B et al. Terahertz technology and its applications[J]. Drug Invention Today, 5, 157-163(2013).

    [3] Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 54, 120101(2015).

    [4] Singh R, Cao W, Al-Naib I et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 105, 171101(2014).

    [5] Chen Y, Zhang M, Ding Z X et al. Microfluidic refractive index sensor based on all-dielectric metasurfaces[J]. Chinese Journal of Lasers, 49, 0613001(2022).

    [6] Wang Q F, Wang Z Y, Han C et al. Quantitative detection of biological mixtures based on terahertz metamaterial chip[J]. Chinese Journal of Lasers, 48, 2314001(2021).

    [7] Reinhard B, Paul O, Rahm M. Metamaterial-based photonic devices for terahertz technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 8500912(2013).

    [8] Schaafsma M C, Bhattacharya A, Rivas J G. Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles[J]. ACS Photonics, 3, 1596-1603(2016).

    [9] Williams B S. Terahertz quantum-cascade lasers[J]. Nature Photonics, 1, 517-525(2007).

    [10] Mittleman D M. Perspective: terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).

    [11] Jansen C, Al-Naib I A I, Born N et al. Terahertz metasurfaces with high Q-factors[J]. Applied Physics Letters, 98, 051109(2011).

    [12] Ferraro A, Zografopoulos D C, Caputo R et al. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates[J]. Scientific Reports, 8, 17272(2018).

    [13] Singh R, Al-Naib I A I, Koch M et al. Sharp Fano resonances in THz metamaterials[J]. Optics Express, 19, 6312-6319(2011).

    [14] Fedotov V A, Rose M, Prosvirnin S L et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 99, 147401(2007).

    [15] Neumann J, Wigner E P. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen[M]. Wightman A S. The collected works of Eugene Paul Wigner, 2875, 294-297(1993).

    [16] Linton C M, McIver M, McIver P et al. Trapped modes for off-centre structures in guides[J]. Wave Motion, 36, 67-85(2002).

    [17] Koch W. Acoustic resonances in rectangular open cavities[J]. AIAA Journal, 43, 2342-2349(2005).

    [18] Evans D V, Porter R. Trapped modes embedded in the continuous spectrum[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 51, 263-274(1998).

    [19] Chen Y, Shen Z, Xiong X et al. Mechanical bound state in the continuum for optomechanical microresonators[J]. New Journal of Physics, 18, 063031(2016).

    [20] Cattapan G, Lotti P. Fano resonances in stubbed quantum waveguides with impurities[J]. The European Physical Journal B, 60, 51-60(2007).

    [21] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [22] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [23] Carletti L, Koshelev K, de Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).

    [24] Zeng Q P, Hu F R, Zhou Y et al. High Q-value terahertz metamaterial sensor based on double ellipse structure[J]. Acta Optica Sinica, 41, 1428001(2021).

    [25] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [26] Azzam S I, Kildishev A V. Photonic bound states in the continuum: from basics to applications[J]. Advanced Optical Materials, 9, 2001469(2021).

    [27] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [28] Abujetas D R, van Hoof N, ter Huurne S et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 6, 996-1001(2019).

    [29] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 7, 1900383(2019).

    [30] Campione S, Liu S, Basilio L I et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces[J]. ACS Photonics, 3, 2362-2367(2016).

    [31] Tuz V R, Khardikov V V, Kupriianov A S et al. High-quality trapped modes in all-dielectric metamaterials[J]. Optics Express, 26, 2905-2916(2018).

    [32] Fan K B, Shadrivov I V, Padilla W J. Dynamic bound states in the continuum[J]. Optica, 6, 169-173(2019).

    [33] Gu J Q, Singh R, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).

    [34] Srivastava Y K, Manjappa M, Cong L Q et al. Ultrahigh-Q Fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry[J]. Advanced Optical Materials, 4, 457-463(2016).

    [35] Xu N N, Singh R, Zhang W L. High-Q lattice mode matched structural resonances in terahertz metasurfaces[J]. Applied Physics Letters, 109, 021108(2016).

    [36] Aydin K, Cakmak A O, Sahin L et al. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture[J]. Physical Review Letters, 102, 013904(2009).

    [37] Zhao X G, Chen C X, Kaj K et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 7, 1548-1554(2020).

    [38] Niu J Q, Zhai Y Q, Han Q Q et al. Resonance-trapped bound states in the continuum in metallic THz metasurfaces[J]. Optics Letters, 46, 162-165(2021).

    [39] Cong L Q, Srivastava Y K, Singh R. Tailoring the multipoles in THz toroidal metamaterials[J]. Applied Physics Letters, 111, 081108(2017).

    [40] Al-Naib I, Yang Y P, Dignam M M et al. Ultra-high Q even eigenmode resonance in terahertz metamaterials[J]. Applied Physics Letters, 106, 011102(2015).

    [41] Grischkowsky D, Keiding S, van Exter M et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 7, 2006-2015(1990).

    [42] Han S, Cong L Q, Srivastava Y K et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, 1901921(2019).

    [43] Azad A K, Zhao Y G, Zhang W L et al. Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays[J]. Optics Letters, 31, 2637-2639(2006).

    [44] Ordal M A, Bell R J, Alexander R W, Jr et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 24, 4493-4499(1985).

    [45] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    Xingyuan Zhang, Jianqiang Gu, Wenqiao Shi. Terahertz Metasurface with Bound States in Continuum Based on Metal Split Ring Resonator[J]. Chinese Journal of Lasers, 2023, 50(2): 0214001
    Download Citation