[1] J ZHANG, L ZHANG, W XU. Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 45, 113001(2012).
[2] J M PITARKE, V M SILKIN, E V CHULKOV et al. Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 70, 1-87(2006).
[3] X Q ZHANG, Q XU, L B XIA et al. Terahertz surface plasmonic waves: a review. Advanced Photonics, 2, 014001(2020).
[4] F J GARCIA-VIDAL, A I FERNANDEZ-DOMINGUEZ, L MARTIN-MORENO et al. Spoof surface plasmon photonics. Reviews of Modern Physics, 94, 025004(2022).
[5] Z W CHENG, M WANG, Z H YOU et al. Spoof surface plasmonics: principle, design, and applications. Journal of Physics: Condensed Matter, 34, 263002(2022).
[6] J ZHANG, H C ZHANG, X X GAO et al. Integrated spoof plasmonic circuits. Science Bulletin, 64, 843-855(2019).
[7] Q XU, Y H LANG, X JIANG et al. Meta-optics inspired surface plasmon devices. Photonics Insights, 2, R02(2023).
[8] X Q SU, Q XU, Y C LU et al. Gradient index devices for terahertz spoof surface plasmon polaritons. ACS Photonics, 7, 3305-3312(2020).
[9] X ZHANG, W Y CUI, Y LEI et al. Spoof localized surface plasmons for sensing applications. Advanced Materials Technologies, 6, 2000863(2021).
[10] X ZHANG, T J CUI. Contactless glucose sensing at sub‐micromole level using a deep‐subwavelength decimeter‐wave plasmonic resonator. Laser & Photonics Reviews, 16, 2200221(2022).
[11] V G M ANNAMDAS, C K SOH. Contactless load monitoring in near-field with surface localized spoof plasmons-a new breed of metamaterials for health of engineering structures. Sensors and Actuators A: Physical, 244, 156-165(2016).
[12] R L SHAO, Y J ZHOU, L YANG. Quarter-mode spoof plasmonic resonator for a microfluidic chemical sensor. Applied Optics, 57, 8472-8477(2018).
[13] F GAO, Z GAO, Y ZHANG et al. Vertical transport of subwavelength localized surface electromagnetic modes. Laser & Photonics Reviews, 9, 571-576(2015).
[14] Z LIAO, B C PAN, X SHEN et al. Multiple Fano resonances in spoof localized surface plasmons. Optics Express, 22, 15710-15717(2014).
[15] J ZHOU, L CHEN, Q SUN et al. Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons. Applied Physics Express, 13, 012014(2019).
[16] J CAI, Y J ZHOU, Y ZHANG et al. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids. Optics Express, 26, 25460-25470(2018).
[17] N PAPASIMAKIS, V A FEDOTOV, N I ZHELUDEV et al. Metamaterial analog of electromagnetically induced transparency. Physical Review Letters, 101, 253903(2008).
[18] N LIU, T WEISS, M MESCH et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Letters, 10, 1103-1107(2010).
[19] J Q GU, R SINGH, X LIU et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 3, 1151(2012).
[20] N LIU, L LANGGUTH, T WEISS et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 8, 758-762(2009).
[21] Z XU, Y WANG, S LIU et al. Metamaterials with analogous electromagnetically induced transparency and related sensor designs-a review. IEEE Sensors Journal, 23, 6378-6396(2023).
[22] P HUANG, Y YAO, W ZHONG et al. Optical sensing based on classical analogy of double electromagnetically induced transparencies. Results in Physics, 39, 105732(2022).
[23] Zhanshuo SUN, Xin WANG, Junlin WANG et al. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta Physica Sinica, 71, 138101(2022).
[24] H F MA, X SHEN, Q CHENG et al. Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser & Photonics Reviews, 8, 146-151(2014).
[25] X Q SU, L J DONG, H L WEN et al. Cascaded plasmon-induced transparency in spoof surface plasmon polariton waveguide. Results in Physics, 43, 106044(2022).