[1] EM-DAT, CRED / UCLouvain, Brussels, Belgium.
[2] A.G. MacIntyre, J.A. Barbera, E.R. Smith, Surviving collapsed structure entrapment after earthquakes: a “time-to-rescue” analysis. Prehosp. Disaster Med. 21, 4–17;discussion 18–19 (2006).
[3] P. Cao, J. Zheng, M. Li, Post-earthquake scheduling of rescuers: a method considering multiple disaster areas and rescuer collaboration. Sustainability 15, 11586 (2023).
[4] X. Wang, X. Yang, Structure design of a miniature and jumping robot for search and rescue. J. Eng. 2019, 219–224 (2019).
[5] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo et al., The Current state and future outlook of rescue robotics. J. Field Robot. 36, 1171–1191 (2019).
[6] E. Faruk Kececi, Design and prototype of mobile robots for rescue operations. Robotica 27(05), 729–737 (2009).
[7] Y. Meng, C. Lu, Y. Yan, L. Shi, J. Liu, Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: a simulation approach. Process. Saf. Environ. Prot. 94, 366–379 (2015).
[8] F. Celano, M. Dolšek, Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes. Reliab. Eng. Syst. Saf. 206, 107287 (2021).
[9] J.E. Lai-Cheong, J.A. McGrath, Structure and function of skin, hair and nails. Medicine 41, 317–320 (2013).
[10] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015).
[11] W. Wu, L. Li, Z. Li, J. Sun, L. Wang, Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv. Mater. 35, e2304596 (2023).
[12] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan et al., Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 36, e2304182 (2024).
[13] B. Zhong, X. Qin, H. Xu, L. Liu, L. Li et al., Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 15, 624 (2024).
[14] Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023).
[15] Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).
[16] J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021).
[17] A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
[18] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021).
[19] R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010).
[20] C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18, 948 (2018).
[21] C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).
[22] P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021).
[23] K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33, e2008701 (2021).
[24] L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano. 18, 15754–15768 (2024). https://doi.org/
[25] K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 17, 16160–16173 (2023).
[26] S. Guo, Y. Zhang, S.C. Tan, Device design and optimization of sorption-based atmospheric water harvesters. Device 1, 100099 (2023).
[27] S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35, e2207916 (2023).
[28] S. Zhang, Y. Zhou, A. Libanori, Y. Deng, M. Liu et al., Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6(5), 338–348 (2023).
[29] B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).
[30] Q. Yang, Z. Ye, R. Wu, H. Lv, C. Li et al., A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin. Adv. Mater. Technol. 8, 2370113 (2023).
[31] Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang et al., Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018).
[32] J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023).
[33] J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022).
[34] Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022).
[35] H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023).
[36] H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024).
[37] W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023).
[38] Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023).
[39] Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023).
[40] W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 2316339 (2024).
[41] K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022).
[42] Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021).
[43] Z. Lei, Q. Wang, P. Wu, A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017).
[44] Z. Wang, N. Li, X. Yang, Z. Zhang, H. Zhang et al., Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst. Nanoeng. 10, 55 (2024).
[45] H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6, 2000239 (2020).
[46] W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024).
[47] Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024).
[48] F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total. Environ. 714, 136712 (2020).
[49] Y. Wang, L. Xiong, M. Tang, Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 37, 644–667 (2017).
[50] R. Nieder, D.K. Benbi, Reactive nitrogen compounds and their influence on human health: an overview. Rev. Environ. Health 37, 229–246 (2022).
[51] L. Pan, L. Zan, F.S. Foster, Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med. Biol. 24, 995–1007 (1998).
[52] S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12, 22212–22224 (2020).
[53] Z. Gao, Z. Lou, W. Han, G. Shen, A self-healable bifunctional electronic skin. ACS Appl. Mater. Interfaces 12, 24339–24347 (2020).
[54] Y. Zhang, Y. Zhao, W. Zhai, G. Zheng, Y. Ji et al., Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem. Eng. J. 407, 127960 (2021).
[55] B. Liang, B. Huang, J. He, R. Yang, C. Zhao et al., Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 15, 3614–3620 (2022).
[56] D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016).
[57] Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022).
[58] H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11, 40613–40619 (2019).
[59] H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019).
[60] H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sources 378, 537–545 (2018).
[61] S.R. Taylor, E. Gileadi, Physical interpretation of the Warburg impedance. Corrosion 51, 664–671 (1995).
[62] S. Gao, Z. Liu, S. Xu, A. Zheng, P. Wu et al., Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. J. Catal. 377, 51–62 (2019).
[63] J. Kärger, H. Pfeifer, F. Stallmach, N.N. Feoktistova, S.P. Zhdanov, 129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13(1), 50–55 (1993).
[64] J. Sheng, H. Chen, B. Li, L. Chang, Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A 110, 511–515 (2013).
[65] P. Fryń, S. Lalik, N. Górska, A. Iwan, M. Marzec, Comparison of the dielectric properties of ecoflex® with L, D-poly(lactic acid) or polycaprolactone in the presence of SWCN or 5CB. Materials 14, 1719 (2021).
[66] A. Nanda, V. Singh, R.K. Jha, J. Sinha, S. Avasthi et al., Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Appl. Mater. Interfaces 13, 21936–21943 (2021).
[67] M.L. Jin, S. Park, H. Kweon, H.J. Koh, M. Gao et al., Scalable superior chemical sensing performance of stretchable ionotronic skin via a π-hole receptor effect. Adv. Mater. 33, e2007605 (2021).
[68] L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022).
[69] T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018).
[70] X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12, 4895 (2021).
[71] H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu et al., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783 (2021).
[72] Y. Hu, T. Li, J. Zhang, J. Guo, W. Wang et al., High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuat. B Chem. 352, 130912 (2022).
[73] D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human–robot interaction. Adv. Intell. Syst. 4, 2270027 (2022).
[74] Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10, e2303949 (2023).