• Nano-Micro Letters
  • Vol. 16, Issue 1, 256 (2024)
Jianye Li1,6, Hao Wang1, Yibing Luo1, Zijing Zhou1..., He Zhang7, Huizhi Chen9,10, Kai Tao2,3,*, Chuan Liu1, Lingxing Zeng11, Fengwei Huo4,5,** and Jin Wu1,6,7,8,***|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
  • 2Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
  • 3Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, People’s Republic of China
  • 4The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, People’s Republic of China
  • 5Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
  • 6State Key Laboratory of Transducer Technology, Shanghai, 200050, People’s Republic of China
  • 7Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People’s Republic of China
  • 8State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
  • 9Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan 523808, People’s Republic of China
  • 10The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, People’s Republic of China
  • 11Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou 350007, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01466-6 Cite this Article
    Jianye Li, Hao Wang, Yibing Luo, Zijing Zhou, He Zhang, Huizhi Chen, Kai Tao, Chuan Liu, Lingxing Zeng, Fengwei Huo, Jin Wu. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm[J]. Nano-Micro Letters, 2024, 16(1): 256 Copy Citation Text show less
    References

    [1] EM-DAT, CRED / UCLouvain, Brussels, Belgium.

    [2] A.G. MacIntyre, J.A. Barbera, E.R. Smith, Surviving collapsed structure entrapment after earthquakes: a “time-to-rescue” analysis. Prehosp. Disaster Med. 21, 4–17;discussion 18–19 (2006).

    [3] P. Cao, J. Zheng, M. Li, Post-earthquake scheduling of rescuers: a method considering multiple disaster areas and rescuer collaboration. Sustainability 15, 11586 (2023).

    [4] X. Wang, X. Yang, Structure design of a miniature and jumping robot for search and rescue. J. Eng. 2019, 219–224 (2019).

    [5] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo et al., The Current state and future outlook of rescue robotics. J. Field Robot. 36, 1171–1191 (2019).

    [6] E. Faruk Kececi, Design and prototype of mobile robots for rescue operations. Robotica 27(05), 729–737 (2009).

    [7] Y. Meng, C. Lu, Y. Yan, L. Shi, J. Liu, Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: a simulation approach. Process. Saf. Environ. Prot. 94, 366–379 (2015).

    [8] F. Celano, M. Dolšek, Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes. Reliab. Eng. Syst. Saf. 206, 107287 (2021).

    [9] J.E. Lai-Cheong, J.A. McGrath, Structure and function of skin, hair and nails. Medicine 41, 317–320 (2013).

    [10] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015).

    [11] W. Wu, L. Li, Z. Li, J. Sun, L. Wang, Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv. Mater. 35, e2304596 (2023).

    [12] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan et al., Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 36, e2304182 (2024).

    [13] B. Zhong, X. Qin, H. Xu, L. Liu, L. Li et al., Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 15, 624 (2024).

    [14] Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33, 2300046 (2023).

    [15] Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).

    [16] J. Chen, Y. Zhu, X. Chang, D. Pan, G. Song et al., Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 31, 2104686 (2021).

    [17] A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    [18] S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021).

    [19] R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010).

    [20] C. Chi, X. Sun, N. Xue, T. Li, C. Liu, Recent progress in technologies for tactile sensors. Sensors 18, 948 (2018).

    [21] C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

    [22] P. Zhu, H. Du, X. Hou, P. Lu, L. Wang et al., Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021).

    [23] K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi et al., A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33, e2008701 (2021).

    [24] L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano. 18, 15754–15768 (2024). https://doi.org/

    [25] K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 17, 16160–16173 (2023).

    [26] S. Guo, Y. Zhang, S.C. Tan, Device design and optimization of sorption-based atmospheric water harvesters. Device 1, 100099 (2023).

    [27] S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35, e2207916 (2023).

    [28] S. Zhang, Y. Zhou, A. Libanori, Y. Deng, M. Liu et al., Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron. 6(5), 338–348 (2023).

    [29] B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    [30] Q. Yang, Z. Ye, R. Wu, H. Lv, C. Li et al., A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin. Adv. Mater. Technol. 8, 2370113 (2023).

    [31] Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang et al., Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018).

    [32] J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023).

    [33] J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022).

    [34] Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9, 1356–1386 (2022).

    [35] H. Qiao, S. Sun, P. Wu, Non-equilibrium-growing aesthetic ionic skin for fingertip-like strain-undisturbed tactile sensation and texture recognition. Adv. Mater. 35, e2300593 (2023).

    [36] H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024).

    [37] W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023).

    [38] Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2023).

    [39] Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023).

    [40] W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 2316339 (2024).

    [41] K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022).

    [42] Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021).

    [43] Z. Lei, Q. Wang, P. Wu, A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz. 4, 694–700 (2017).

    [44] Z. Wang, N. Li, X. Yang, Z. Zhang, H. Zhang et al., Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst. Nanoeng. 10, 55 (2024).

    [45] H. Huang, L. Han, X. Fu, Y. Wang, Z. Yang et al., Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 6, 2000239 (2020).

    [46] W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024).

    [47] Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024).

    [48] F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total. Environ. 714, 136712 (2020).

    [49] Y. Wang, L. Xiong, M. Tang, Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 37, 644–667 (2017).

    [50] R. Nieder, D.K. Benbi, Reactive nitrogen compounds and their influence on human health: an overview. Rev. Environ. Health 37, 229–246 (2022).

    [51] L. Pan, L. Zan, F.S. Foster, Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med. Biol. 24, 995–1007 (1998).

    [52] S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12, 22212–22224 (2020).

    [53] Z. Gao, Z. Lou, W. Han, G. Shen, A self-healable bifunctional electronic skin. ACS Appl. Mater. Interfaces 12, 24339–24347 (2020).

    [54] Y. Zhang, Y. Zhao, W. Zhai, G. Zheng, Y. Ji et al., Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chem. Eng. J. 407, 127960 (2021).

    [55] B. Liang, B. Huang, J. He, R. Yang, C. Zhao et al., Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Res. 15, 3614–3620 (2022).

    [56] D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim et al., Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016).

    [57] Q. Tang, M. Zou, L. Chang, W. Guo, A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 430, 132152 (2022).

    [58] H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11, 40613–40619 (2019).

    [59] H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9, 1802768 (2019).

    [60] H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sources 378, 537–545 (2018).

    [61] S.R. Taylor, E. Gileadi, Physical interpretation of the Warburg impedance. Corrosion 51, 664–671 (1995).

    [62] S. Gao, Z. Liu, S. Xu, A. Zheng, P. Wu et al., Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. J. Catal. 377, 51–62 (2019).

    [63] J. Kärger, H. Pfeifer, F. Stallmach, N.N. Feoktistova, S.P. Zhdanov, 129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13(1), 50–55 (1993).

    [64] J. Sheng, H. Chen, B. Li, L. Chang, Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A 110, 511–515 (2013).

    [65] P. Fryń, S. Lalik, N. Górska, A. Iwan, M. Marzec, Comparison of the dielectric properties of ecoflex® with L, D-poly(lactic acid) or polycaprolactone in the presence of SWCN or 5CB. Materials 14, 1719 (2021).

    [66] A. Nanda, V. Singh, R.K. Jha, J. Sinha, S. Avasthi et al., Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Appl. Mater. Interfaces 13, 21936–21943 (2021).

    [67] M.L. Jin, S. Park, H. Kweon, H.J. Koh, M. Gao et al., Scalable superior chemical sensing performance of stretchable ionotronic skin via a π-hole receptor effect. Adv. Mater. 33, e2007605 (2021).

    [68] L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022).

    [69] T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zhang et al., Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Res. 11, 791–803 (2018).

    [70] X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12, 4895 (2021).

    [71] H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu et al., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783 (2021).

    [72] Y. Hu, T. Li, J. Zhang, J. Guo, W. Wang et al., High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuat. B Chem. 352, 130912 (2022).

    [73] D. Kong, G. Yang, G. Pang, Z. Ye, H. Lv et al., Bioinspired co-design of tactile sensor and deep learning algorithm for human–robot interaction. Adv. Intell. Syst. 4, 2270027 (2022).

    [74] Y. Lu, D. Kong, G. Yang, R. Wang, G. Pang et al., Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv. Sci. 10, e2303949 (2023).

    Jianye Li, Hao Wang, Yibing Luo, Zijing Zhou, He Zhang, Huizhi Chen, Kai Tao, Chuan Liu, Lingxing Zeng, Fengwei Huo, Jin Wu. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm[J]. Nano-Micro Letters, 2024, 16(1): 256
    Download Citation