• Chinese Journal of Lasers
  • Vol. 52, Issue 2, 0212004 (2025)
Dingyuan Fu, An Ye, Yutong Tang, Xiaolin Li*..., Yueping Niu and Shangqing Gong|Show fewer author(s)
Author Affiliations
  • School of Physics, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.3788/CJL240814 Cite this Article Set citation alerts
    Dingyuan Fu, An Ye, Yutong Tang, Xiaolin Li, Yueping Niu, Shangqing Gong. Miniaturized VLF Antenna Utilizing Nitrogen‐Vacancy Centers in Diamond for Vector Signal Detection[J]. Chinese Journal of Lasers, 2025, 52(2): 0212004 Copy Citation Text show less
    References

    [1] Sameer B T P, Sunil K S. Underwater communications[C], 23-25(2015).

    [2] Liu Q. The application of the electrically small antenna in very low frequency receiving system[D], 11-40(2018).

    [3] Dong C Z, He Y F, Li M H et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 19, 398-402(2020).

    [4] Chatzidrosos G, Wickenbrock A, Bougas L et al. Eddy-current imaging with nitrogen-vacancy centers in diamond[J]. Physical Review Applied, 11, 014060(2019).

    [5] Wolf T, Neumann P, Nakamura K et al. Subpicotesla diamond magnetometry[J]. Physical Review X, 5, 041001(2015).

    [6] Zhou H Y, Choi J, Choi S et al. Quantum metrology with strongly interacting spin systems[J]. Physical Review X, 10, 031003(2020).

    [7] Zhang C, Shagieva F, Widmann M et al. Diamond magnetometry and gradiometry towards subpicotesla DC field measurement[J]. Physical Review Applied, 15, 064075(2021).

    [8] Wang Z C, Kong F, Zhao P J et al. Picotesla magnetometry of microwave fields with diamond sensors[J]. Science Advances, 8, eabq8158(2022).

    [9] Fagaly R L. Superconducting quantum interference device instruments and applications[J]. Review of Scientific Instruments, 77, 101101(2006).

    [10] Kitching J, Knappe S, Donley E. Atomic sensors: a review[J]. IEEE Sensors Journal, 11, 1749-1758(2011).

    [11] Lu Y T, Zhao T, Zhu W H et al. Recent progress of atomic magnetometers for geomagnetic applications[J]. Sensors, 23, 5318(2023).

    [12] Rondin L, Tetienne J P, Hingant T et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 77, 056503(2014).

    [13] Schirhagl R, Chang K, Loretz M et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology[J]. Annual Review of Physical Chemistry, 65, 83-105(2014).

    [14] Casola F, van der Sar T, Yacoby A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond[J]. Nature Reviews Materials, 3, 17088(2018).

    [15] Gruber A, Dräbenstedt A, Tietz C et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 276, 2012-2014(1997).

    [16] Wu Y Z, Jelezko F, Plenio M B et al. Diamond quantum devices in biology[J]. Angewandte Chemie (International Ed. in English), 55, 6586-6598(2016).

    [17] Glenn D R, Fu R R, Kehayias P et al. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope[J]. Geochemistry, Geophysics, Geosystems, 18, 3254-3267(2017).

    [18] Liu Y, Lin H B, Zhang S C et al. Optical fiber quantum sensing based on diamond nitrogen-vacancy center[J]. Laser & Optoelectronics Progress, 60, 1106001(2023).

    [19] Jensen K, Kehayias P, Budker D. Magnetometry with nitrogen-vacancy centers in diamond[M]. High sensitivity magnetometers, 19, 553-576(2017).

    [20] Zhang C, Dasari D, Widmann M et al. Quantum-assisted distortion-free audio signal sensing[J]. Nature Communications, 13, 4637(2022).

    [21] Fan P C, Zhang J X, Cui Z Y et al. Millihertz magnetic resonance spectroscopy combining the heterodyne readout based on solid-spin sensors[J]. Optics Express, 31, 3187-3198(2023).

    [22] Taylor J M, Cappellaro P, Childress L et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 4, 810-816(2008).

    [23] Maze J R, Stanwix P L, Hodges J S et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 455, 644-647(2008).

    [24] Balasubramanian G, Neumann P, Twitchen D et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 8, 383-387(2009).

    [25] le Sage D, Pham L M, Bar-Gill N et al. Efficient photon detection from color centers in a diamond optical waveguide[J]. Physical Review B, 85, 121202(2012).

    [26] Pham L M, Bar-Gill N, Belthangady C et al. Enhanced solid-state multispin metrology using dynamical decoupling[J]. Physical Review B, 86, 045214(2012).

    [27] Kitazawa S, Matsuzaki Y, Saijo S et al. Vector-magnetic-field sensing via multifrequency control of nitrogen-vacancy centers in diamond[J]. Physical Review A, 96, 042115(2017).

    [28] Schoenfeld R S, Harneit W. Real time magnetic field sensing and imaging using a single spin in diamond[J]. Physical Review Letters, 106, 030802(2011).

    [29] Shin C S, Avalos C E, Butler M C et al. Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit[J]. Journal of Applied Physics, 112, 124519(2012).

    [30] Lee S Y, Paik S, McCamey D R et al. Modulation frequency dependence of continuous-wave optically/electrically detected magnetic resonance[J]. Physical Review B, 86, 115204(2012).

    [31] El-Ella H A R, Ahmadi S, Wojciechowski A M et al. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles[J]. Optics Express, 25, 14809-14821(2017).

    [32] Schloss J M, Barry J F, Turner M J et al. Simultaneous broadband vector magnetometry using solid-state spins[J]. Physical Review Applied, 10, 034044(2018).

    [33] Kim D, Ibrahim M I, Foy C et al. A CMOS-integrated quantum sensor based on nitrogen-vacancy centres[J]. Nature Electronics, 2, 284-289(2019).

    [34] Hatano Y, Shin J, Nishitani D et al. Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor[J]. Applied Physics Letters, 118, 034001(2021).

    [35] Balasubramanian G, Lazariev A, Arumugam S R et al. Nitrogen-vacancy color center in diamond: emerging nanoscale applications in bioimaging and biosensing[J]. Current Opinion in Chemical Biology, 20, 69-77(2014).

    [36] Song X R. Generation and quantum manipulation of NV centers in nanodiamond[D], 23-26(2014).

    [37] Maertz B J, Wijnheijmer A P, Fuchs G D et al. Vector magnetic field microscopy using nitrogen vacancy centers in diamond[J]. Applied Physics Letters, 96, 092504(2010).

    [38] Steinert S, Dolde F, Neumann P et al. High sensitivity magnetic imaging using an array of spins in diamond[J]. The Review of Scientific Instruments, 81, 043705(2010).

    [39] Pham L M, le Sage D, Stanwix P L et al. Magnetic field imaging with nitrogen-vacancy ensembles[J]. New Journal of Physics, 13, 045021(2011).

    [40] Tetienne J P, Rondin L, Spinicelli P et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging[J]. New Journal of Physics, 14, 103033(2012).

    [41] Sasaki K, Monnai Y, Saijo S et al. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond[J]. The Review of Scientific Instruments, 87, 053904(2016).

    [42] He J, Liu J L, Xiu Q L et al. Effects of irradiation and annealing on nitrogen-vacancy center yield in diamond[J]. Acta Optica Sinica, 42, 1316001(2022).

    [43] Wu D J. Research of vector magnetic field measurement method and application based on NV color centers in diamond[D](2023).

    Dingyuan Fu, An Ye, Yutong Tang, Xiaolin Li, Yueping Niu, Shangqing Gong. Miniaturized VLF Antenna Utilizing Nitrogen‐Vacancy Centers in Diamond for Vector Signal Detection[J]. Chinese Journal of Lasers, 2025, 52(2): 0212004
    Download Citation