[1] MILLER D A B. Rationale and challenges for optical interconnects to electronic chips[J]. Proceedings of the IEEE, 2000, 88(6): 728-749.
[2] GUNN C. CMOS photonics for high-speed interconnects[J]. IEEE Micro, 2006, 26(2): 58-66.
[3] MILLER D A B.Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 2009, 97(7): 1166-1185.
[4] PANICCIA M J. A perfect marriage: optics and silicon[J]. Optik & Photonik, 2011, 6(2): 34-38.
[5] KIRCHAIN R, KIMERLING L. A roadmap for nanophotonics[J]. Nature Photonics, 2007, 1(6): 303-305.
[6] LEE B G, CHEN X, BIBERMAN A, et al. Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks[J]. IEEE Photonics Technology Letters, 2008, 20(6): 398-400.
[7] QIAN D, HUANG M F, IP E, et al. 101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation[C]. NFOEC, 2011: PDPB5.
[8] LI G, BAI N, ZHAO N, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.
[9] DAI D, WANG J, SHI Y. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 2013, 38(9): 1422-1424.
[10] DRISCOLL J B, GROTE R R, SOUHAN B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing[J]. Optics Letters, 2013, 38(11): 1854-1856.
[11] CHEN W, WANG P, YANG J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions[J]. Optics Express, 2013, 21(21): 25113-25119.
[12] CHEN W, WANG P, YANG T, et al. Silicon three-mode (de) multiplexer based on cascaded asymmetric Y junctions[J]. Optics Letters, 2016, 41(12): 2851-2854.
[13] UEMATSU T, ISHIZAKA Y, KAWAGUCHI Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. Journal of Lightwave Technology, 2012, 30(15): 2421-2426.
[14] XING J, LI Z, XIAO X, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers[J]. Optics Letters, 2013, 38(17): 3468-3470.
[15] SUN C, YU Y, YE M, et al. An ultra-low crosstalk and broadband two-mode (de) multiplexer based on adiabatic couplers[J]. Scientific Reports, 2016, 6.
[16] QIU H, YU H, HU T, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers[J]. Optics Express, 2013, 21(15): 17904-17911.
[17] LUO L W, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5.
[18] DAI D, WANG J, CHEN S, et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode division multiplexing[J]. Laser & Photonics Reviews, 2015, 9(3): 339-344.
[19] DING Y, XU J, DA Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 21(8): 10376-10382.
[20] WANG J, XUAN Y, QI M, et al. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers[J]. Optics Letters, 2015, 40(9): 1956-1959.
[21] Sun Y, Xiong Y, Winnie N Y. Experimental demonstration of a two-mode (de) multiplexer based on a taper-etched directionalcoupler[J]. Optics Letters, 2016, 41(16): 3743-3746.
[22] DAI D, WANG J, SHI Y. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 2013, 38(9): 1422-1424.
[23] DAI T, SHEN A, WANG G, et al. Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators[J]. Optics Letters, 2016, 41(20): 4807-4810.