[1] SUN T Y, CHEN B, GUO Y, et al. Ultralarge anti-stokes lasing through tandem upconversion[J]. Nat Commun, 2022, 13(1): 1-7.
[2] BLOEMBERGEN, N, Solid state infrared quantum counters[J]. Phys Rev Lett, 1959, 2(3): 84-85.
[3] MEARS R, REEKIE L, JAUNCEY I, et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electron Lett, 1987, 23(19): 1026-1028.
[4] ELISEEVA S, BüNZLI J. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem Soc Rev, 2010, 39(1): 189-227.
[5] AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chem rev, 2004, 104(1): 139-174.
[6] POLLNAU M, GAMELIN D, LüTHI S, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys Rev B, 2000, 61(5): 3337-3346.
[7] AUZEL F. Materials and devices using double-pumped-phosphors with energy transfer[J]. Proc IEEE, 1973, 61(6): 758-786.
[8] WEN, S, ZHOU, J, ZHENG, K, et al. Advances in highly doped upconversion nanoparticles[J]. Nat Commun, 2018, 9(1): 1-12.
[9] WANG F, DENG R, WANG J, et al. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat Mater, 2011, 10(12): 968-973.
[10] BRUSCHINI C, HOMULLE H, ANTOLOVIC I, et al. Single-photon avalanche diode imagers in biophotonics: review and outlook[J]. Light Sci Appl, 2019, 8(1): 1-28.
[11] WANG F, BANERJEE D, LIU Y, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst, 2010, 135(8): 1839-1854.
[12] CHENG X, TU D, ZHENG W, et al. Energy transfer designing in lanthanide-doped upconversion nanoparticles[J]. Chem Commun, 2020, 56(96): 15118-15132.
[13] DONG H, SUN L D, YAN C H, Energy transfer in lanthanide upconversion studies for extended optical applications[J]. Chem Soc Rev, 2015, 44(6): 1608-1634.
[14] LI Y, JIA D, REN W, et al. A Versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent[J]. Adv Funct Mater, 2019, 29(32): 1903191.
[15] ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nat Nanotech, 2015, 10(11): 924-936.
[16] HAN S, DENG R, GU Q, et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright[J]. Nature 2020, 587(7835): 594-599.
[17] YANG Y, CONG Y, SHANG J, et al. NIR LSPR-coupling of Ag nanorices and W18O49 nanowires: application of LRET and SERS[J]. Sens Actuators B Chem, 2021, 330: 129199.
[18] LIN T, WANG J. Strategies toward high-performance solution-processed lateral photodetectors. Adv Mater, 2019, 31(35): e1901473.
[19] LI X, ZHU M, DU M, et al. High detectivity graphene-silicon heterojunction photodetector[J]. Small, 2016, 12(5): 595-601.
[20] YANG D, MA D. Development of organic semiconductor photodetectors: from mechanism to applications[J]. Adv Opt Mater, 2019, 7(1): 1800522.
[21] WANG T, LIAN G, HUANG L, et al. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors[J]. Nano Energy, 2019, 64: 103914.
[22] ARMIN A, JANSEN-VAN VUUREN R D, KOPIDAKIS N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nat Commun, 2015, 6: 6343.
[23] ZOU W, GONZáLEZ A, JAMPAIAH D, et al. Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations[J]. Nat Commun, 2018, 9(1): 1-10.
[24] LUTHER J M, JAIN P K, EWERS T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nat Mater, 2011, 10(5): 361-366.
[25] LI J, WANG J, MA J, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals[J]. Nat Commun, 2019, 10(1): 1-10.
[26] XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83.
[27] PARK H G, BARRELET C J, WU Y, et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat Photonics, 2008, 2(10): 622-626.
[28] LEE C H, LEE G H, AREND M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nat Nanotechnol, 2014, 9(9): 676-681.
[29] ARQUER F, ARMIN A, MEREDITH P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nat Rev Mater, 2017, 2(3): 1-17.
[30] BAEG K, BINDA M, NATALI D, et al. Organic light detectors: photodiodes and phototransistors[J]. Adv Mater, 2013, 25(31): 4267-4295.
[31] ROSS D, ARDALAN A, AJAY K, et al. Organic photodiodes: The Future of full color detection and image sensing[J]. Adv Mater, 2016, 28(24): 4766-4802.
[32] LI J, XU Y, HSIANG T, et al. Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors[J]. Appl Phys Lett, 2004, 84(12): 2091-2093.
[33] GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.
[34] HIGASHI Y, KIM K S, JEON H G, et al. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system[J]. J Appl Phys, 2010, 108(3): 034502.
[35] DAI M, CHEN H, FENG R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction[J]. ACS Nano, 2018, 12(8): 8739-8747.
[36] ZHANG X, YANG S, ZHOU H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band[J]. Adv Mater, 2017, 29(21): 1604431.
[37] XU T, WU Y K, LUO X, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nat Commun, 2010, 1(1): 1-5.
[38] PARK H, DAN Y, SEO K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption[J]. Nano Lett, 2014, 14(4): 1804-1809.
[39] XU C T, ZHAN Q, LIU H, et al. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges[J]. Laser Photon Rev, 2013, 7(5): 663-697.
[40] JI Y, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection[J]. Light Sci Appl, 2020, 9(1): 1-12.
[41] ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nat Nanotechnol, 2015, 10(11): 924-936.
[42] WEN S, ZHOU J, SCHUCK P J, et al. Future and challenges for hybrid upconversion nanosystems[J]. Nat Photon, 2019, 13(12): 828-838.
[43] ZHOU J, XU S, ZHANG J, et al. Upconversion luminescence behavior of single nanoparticles[J]. Nanoscale, 2015, 7(37): 15026-15036.
[44] WANG H, KIM D, Perovskite-based photodetectors: materials and devices[J]. Chem Soc Rev, 2017, 46(17): 5204-5236.
[45] DOU L, YANG Y M, YOU J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nat Commun, 2014, 5(1): 1-6.
[46] MIAO J, ZHANG F. Recent progress on highly sensitive perovskite photodetectors[J]. J Mater Chem C, 2019, 7(7): 1741-1791.
[47] SARAN R, CURRY R. Lead sulphide nanocrystal photodetector technologies[J]. Nat Photonics, 2016, 10(2): 81-92.
[48] COWAN S R, BANERJI N, LEONG W, et al. Charge formation, recombination, and sweep-out dynamics in organic solar cells[J]. Adv Funct Mater, 2012, 22(6): 1116-1128.
[49] ZHANG H, SANDRA J, JELISSA D, et al. Transparent organic photodetector using a near-infrared absorbing cyanine dye[J]. Sci Rep, 2015, 5(1): 1-6.
[50] ZHOU J, HUANG J. Photodetectors based on organic-inorganic hybrid lead halide perovskites[J]. Adv Sci, 2018, 5(1): 1700256.
[51] HAEFELE A, BLUMHOFF J, KHNAYZER R, et al. Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear[J]. J Phys Chem Lett, 2012, 3(3): 299-303.
[52] THOMPSON N, WILSON M, CONGREVE D, et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals[J]. Nat Mater, 2014, 13(11): 1039-1043.
[53] WILD J, MEIJERINK A, RATH J, et al. Upconverter solar cells: materials and applications[J]. Energy Environ, 2011, 4(12): 4835- 4848.
[54] YAO J, YANG G. Flexible and high-performance all-2D photodetector for wearable devices[J]. Small, 2018, 14(21): 1704524.
[55] LONG M, WANG P, FANG H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Adv Func Mater, 2019, 29(19): 1803807.
[56] CHEN P, HAN W, ZHAO M, et al. Recent Advances in 2D rare earth materials[J]. Adv Funct Mater, 2020, 31(13): 2008790.
[57] LA J, LEE S, HONG A, et al. A super-boosted hybrid plasmonic upconversion process for photodetection at 1550 nm wavelength[J]. Adv Mater, 2022, 34(5): e2106225.
[58] KATARIA M, YADAV K, CAI S, et al. Highly sensitive, visible blind, wearable, and omnidirectional near-infrared photodetectors[J]. ACS Nano, 2018, 12(9): 9596-9607.
[59] ZHANG Y, WANG J, WANG B, et al. Extending the spectral responsivity of MoS2 phototransistors by incorporating up-conversion microcrystals[J]. Adv Opt Mater, 2018, 6 (21): 1800660.
[60] JI Y, XU W, LI D, et al. Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection[J]. Nano Energy, 2019, 61: 211-220.
[61] LI J, SHEN Y, LIU Y, et al. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite[J]. ACS Appl Mater Inter, 9(22): 19176-19183.
[62] JI Y N, ZHOU D, WANG N, et al. Flexible double narrowband near-infrared photodetector based on PMMA/core-shell upconversion nanoparticle composites[J]. J Rare Earths, 2022, 40(2): 211-217.
[63] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nat Photon, 2010, 4(5): 297-301.
[64] CHIANG C, HAIDER G, TAN W, et al. Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots[J]. ACS Appl Mater Inter, 2016, 8(1): 466-471.
[65] CHEN C, QIAO H, LIN S, et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots[J]. Sci Rep, 2015, 5(1): 1-9.
[66] KIM C, HWANG S, KIM S, et al. High-performance graphene- quantum-dot photodetectors[J]. Sci Rep, 2014, 4(1): 1-6.
[67] THAKUR M, GUPTA A, FAKHRI M, et al. Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector[J]. Nanoscale, 2019, 11(19): 9716-9725.
[68] GUPTA A, THAKUR M, EFFENDI T, et al. Metallo-graphene enhanced upconversion luminescence for broadband photodetection under polychromatic illumination[J]. Chem Eng J, 2021, 420: 127608.
[69] NIU W, CHEN H, CHEN R, et al. Synergetically enhanced near-infrared photoresponse of reduced graphene oxide by upconversion and gold plasmon[J]. Small, 2014, 10(18): 3637-3643.
[70] KWON S, LEE G, JUNG K, et al. A Plasmonic platform with disordered array of metal nanoparticles for three-order enhanced upconversion luminescence and highly sensitive near-infrared photodetector[J]. Adv Mater, 2016, 28(36): 7899-7909.
[71] YAN C, DADVAND A, ROSEI F, et al. Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures[J]. J Am Chem Soc, 132(26): 8868-8869.
[72] HONG A R, KIM J, KIM S, et al. Core/shell-structured upconversion nanophosphor and cadmium-free quantum-dot bilayer-based near-infrared photodetectors[J]. Opt Lett, 2015, 40(21): 4959-4962.
[73] KATARIA M, YADAV K, HAIDER G, et al. Transparent, wearable, broadband, and highly sensitive upconversion nanoparticles and graphene-based hybrid photodetectors[J]. ACS Photon, 2018, 5(6): 2336-2347.
[74] ORIOL L, DOMINIK L, METIN L, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8(7): 497-501.
[75] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano lett, 2011, 11(12): 5111-5116.
[76] BAO C, YANG J, BAI S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications[J]. Adv Mater, 2018, 30(38): e1803422.
[77] NAIR R, BLAKE P, GRIGORENKO A, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.
[78] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.
[79] ZHOU N, XU B, GAN L, et al. Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device[J]. J Mater Chem C, 2017, 5(7): 1591-1595.
[80] GHOSH S, CHIANG W, FAKHRI M, et al. Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite[J]. Nano Energy, 2020, 67: 104258.
[81] XIE L, HONG Z, ZAN J, et al. Broadband detection of X-ray, ultraviolet, and near-infrared photons using solution-processed perovskite-lanthanide nanotransducers[J]. Adv Mater, 2021, 33(25): e2101852.
[82] DING N, XU W, ZHOU D L, et al. Extremely efficient quantum- cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%[J]. Nano Energy, 2020, 78: 105278.
[83] DING N, XU W, ZHOU D L, et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals[J]. Nano Energy, 2020, 76: 105103.
[84] DING N, WU Y J, XU W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared[J]. Light Sci Appl, 2022, 11(1): 91, 1-13.
[85] LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection[J]. Adv Opt Mater, 2021, 9(22): 2100423.