• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 5, 1821 (2022)
WU Limei1、*, LIU Yan1, WANG Xiaolong2, TANG Ning1, and WANG Qing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WU Limei, LIU Yan, WANG Xiaolong, TANG Ning, WANG Qing. Preparation of Fe3O4/Saponite Composites and Removal Performance of 2,4-Dichlorophenol[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1821 Copy Citation Text show less
    References

    [1] XU L J, WANG J L. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 123/124: 117-126.

    [3] WANG X Y, ZHU M P, LIU H L, et al. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2, 4-dichlorophenol[J]. Science of the Total Environment, 2013, 449: 157-167.

    [4] NGUYEN A T, JUANG R S. Photocatalytic degradation of P-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation[J]. Journal of Environmental Management, 2015, 147: 271-277.

    [5] KURIAN M, NAIR D S. Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions[J]. Journal of Water Process Engineering, 2015, 8: e37-e49.

    [6] SABHI S, KIWI J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts[J]. Water Research, 2001, 35(8): 1994-2002.

    [7] LU Y, YU Y, ZHOU R, et al. Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil[J]. Biotechnology Letters, 2011, 33(6): 1159-1167.

    [8] ZHANG B, LIU W W, SUN D J, et al. Hollow nanoshell of layered double oxides for removal of 2,4-dichlorophenol from aqueous solution: synthesis, characterization, and adsorption performance study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561: 244-253.

    [9] HE P, ZHU J Y, CHEN Y Z, et al. Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction[J]. Chemical Engineering Journal, 2021, 406: 126758.

    [10] ZHANG Z Y, HU Y B, RUAN W J, et al. Highly improved dechlorination of 2,4-dichlorophenol in aqueous solution by Fe/Ni nanoparticles supported by polystyrene resin[J]. Chemosphere, 2021, 266: 128976.

    [11] LIU Y H, YANG F L, YUE P L, et al. Catalytic dechlorination of chlorophenols in water by palladium/iron[J]. Water Research, 2001, 35(8): 1887-1890.

    [12] SHAARANI F W, HAMEED B H. Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 180-185.

    [13] ZHAO D M, ZHENG Y Y, LI M, et al. Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2014, 21(5): 1714-1721.

    [15] LIU B M, SONG W B, ZHANG W W, et al. Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: performance and mechanism[J]. Separation and Purification Technology, 2021, 273: 118705.

    [18] BORUAH P K, SHARMA B, KARBHAL I, et al. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation[J]. Journal of Hazardous Materials, 2017, 325: 90-100.

    [19] SHEN M L, FU L, TANG J H, et al. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants[J]. Journal of Hazardous Materials, 2018, 350: 1-9.

    [20] LAZARATOU C V, VAYENAS D V, PAPOULIS D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: a review[J]. Applied Clay Science, 2020, 185: 105377.

    [22] BAO T, DAMTIE M M, WU K, et al. Rectorite-supported nano-Fe3O4 composite materials as catalyst for P-chlorophenol degradation: preparation, characterization, and mechanism[J]. Applied Clay Science, 2019, 176: 66-77.

    [23] ZHANG D, ZHOU C H, LIN C X, et al. Synthesis of clay minerals[J]. Applied Clay Science, 2010, 50(1): 1-11.

    [25] VICENTE I, SALAGRE P, CESTEROS Y, et al. Microwave-assisted synthesis of saponite[J]. Applied Clay Science, 2010, 48(1/2): 26-31.

    [26] ZHANG C Q, HE H P, TAO Q, et al. Metal occupancy and its influence on thermal stability of synthetic saponites[J]. Applied Clay Science, 2017, 135: 282-288.

    [27] COSTENARO D, BISIO C, CARNIATO F, et al. Size effect of synthetic saponite-clay in quasi-solid electrolyte for dye-sensititized solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 9-14.

    [29] NIKOLOPOULOU A, PAPOULIS D, KOMARNENI S, et al. Solvothermal preparation of TiO2/saponite nanocomposites and photocatalytic activity[J]. Applied Clay Science, 2009, 46(4): 363-368.

    [30] KAMESHIMA Y, KAGEYAMA K, MIZUNUMA Y, et al. Preparation and solid acidity of zirconia-cluster/saponite composites[J]. Journal of the Ceramic Society of Japan, 2013, 121(1409): 49-53.

    [31] NAKAHIRA A, NISHIDA S, FUKUNISHI K. Synthesis of magnetic activated carbons for removal of environmental endocrine disrupter using magnetic vector[J]. Journal of the Ceramic Society of Japan, 2006, 114(1325): 135-137.

    [32] VOGELS R J M J, KLOPROGGE J T, GEUS J W. Synthesis and characterization of saponite clays[J]. American Mineralogist, 2005, 90(5/6): 931-944.

    [33] BANDEIRA L C, CALEFI P S, CIUFFI K J, et al. Preparation of composites of laponite with alginate and alginic acid polysaccharides[J]. Polymer International, 2012, 61(7): 1170-1176.

    [34] KARKI H P, OJHA D P, JOSHI M K, et al. Effective reduction of P-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite[J]. Applied Surface Science, 2018, 435: 599-608.

    [35] ZAGHOUANE-BOUDIAF H, BOUTAHALA M, SAHNOUN S, et al. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol[J]. Applied Clay Science, 2014, 90: 81-87.

    [36] TOOR M, JIN B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye[J]. Chemical Engineering Journal, 2012, 187: 79-88.

    [37] XU J, SHENG T T, HU Y J, et al. Adsorption-dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites[J]. Chemical Engineering Journal, 2013, 219: 162-173.

    WU Limei, LIU Yan, WANG Xiaolong, TANG Ning, WANG Qing. Preparation of Fe3O4/Saponite Composites and Removal Performance of 2,4-Dichlorophenol[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1821
    Download Citation