[1] DONALD I W, METCALFE B L, TAYLOR R N J. The immobilization of high level radioactive wastes using ceramics and glasses[J]. J Mater Sci, 1997, 32(22): 58515887.
[2] ZHANG Y J, KONG L G, IONESCU M, et al. Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: a technical review[J]. J Eur Ceram Soc, 2022, 42(5): 1852-1876.
[6] JANTZEN C M, OJOVAN M I. On selection of matrix (wasteform) material for higher activity nuclear waste immobilization (review)[J]. Russ J Inorg Chem, 2019, 64(13): 1611-1624.
[8] JUOI J M, OJOVAN M I, LEE W E. Microstructure and leaching durability of glass composite wasteforms for spent clinoptilolite immobilisation[J]. J Nucl Mater, 2008, 372(2-3): 358-366.
[9] MCMASTER S A, RAM R, FARIS N, et al. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix-a review[J]. J Hazard Mater, 2018, 360: 257-269.
[10] TAYLOR P, ASHMORE S D, OWEN D G. Chemical durability of some sodium borosilicate glasses improved by phase separation[J]. J Am Ceram Soc, 1987, 70(5): 333-338.
[11] GODON N, THOMASSIN J H, TOURAY J C, et al. Experimental alteration of R7T7 nuclear model glass in solutions with different salinities (90℃, 1 bar): implications for the selection of geological repositories[J]. J Mater Sci, 1988, 23(1): 126-134.
[12] GIN S, ABDELOUAS A, CRISCENTI L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Mater Today, 2013, 16(6): 243-248.
[13] GRAMBOW B. Nuclear waste glasses - how durable?[J]. Elements, 2006, 2(6): 357-364.
[14] SIVAPRAKASAM B T, SUGILAL G, SHAH J G, et al. In situ process monitoring of nuclear waste glass melts using non-contact microwave sensor[J]. Measurement, 2020, 160: 107793.
[15] WANG Z B, ZHAO Z W, PENG B, et al. Investigation on the mechanism of the immobilization of CeO2 by using cullet-based glass (CBG)[J]. Ann Nucl Energy, 2019, 133: 209-215.
[17] VERNAZ E, GIN S, JGOU C, et al. Present understanding of R7T7 glass alteration kinetics and their impact on long-term behavior modeling[J]. J Nucl Mater, 2001, 298(1/2): 27-36.
[19] POPOV I B, IVANOV V V, MINAEV A A, et al. Effect of radiation-induced crystallization on the chemical stability of basalt-like matrices with immobilized α-emitting components of radioactive Wastes[J]. High Energy Chem, 2002, 36(2): 59-62.
[20] AERTSENS M, DE CANNIRE P, MOORS H. Modelling of silica diffusion experiments with 32Si in Boom Clay[J]. J Contam Hydrol, 2003, 61(1-4): 117-129.
[21] ADVOCAT T, CROVISIER J L, FRITZ B, et al. Thermokinetic model of borosilicate glass dissolution: contextual affinity[J].MRS Online Proc Libr, 1989, 176(1): 241-248.
[22] PARKHURST D L, APPELO C A J. User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Water-Resources Investigations Report, 1999.
[23] KIENZLER B, LUCKSCHEITER B, WILHELM S. Waste form corrosion modeling: comparison with experimental results[J]. Waste Manag, 2001, 21(8): 741-752.
[24] PARKHURST D L, THORSTENSON D, PLUMMER L. Phreeqe: a computer program for geochemical calculations [R]. US Geological Survey, 1980.
[25] DELAYE J M, GHALEB D. Molecular dynamics simulation of low-energy atomic displacement cascades in a simplified nuclear glass[J]. J Nucl Mater, 1997, 244(1): 22-28.
[26] AERTSENS M. Testing the grambow glass dissolution model by comparing it with Monte Carlo simulation results[J]. MRS Online Proc Libr, 1998, 556(1): 409.
[27] BRAUER D S, RSSEL C, KRAFT J. Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: experimental and modeling using artificial neural networks[J]. J Non-Cryst Solids, 2007, 353(3): 263-270.
[30] FONG S K, DONALD I W, METCALFE B L. Development of a glass-encapsulated calcium phosphate wasteform for the immobilization of actinide and halide containing radioactive wastes from the pyrochemical reprocessing of plutonium metal[J]. J Alloys Compd, 2007, 444-445: 424-428.