• Matter and Radiation at Extremes
  • Vol. 8, Issue 3, 038402 (2023)
Zihao Huo1、*, Defang Duan1, Tiancheng Ma1, Zihan Zhang1, Qiwen Jiang1, Decheng An1, Hao Song2, Fubo Tian1, and Tian Cui1、2
Author Affiliations
  • 1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
  • 2Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
  • show less
    DOI: 10.1063/5.0151844 Cite this Article
    Zihao Huo, Defang Duan, Tiancheng Ma, Zihan Zhang, Qiwen Jiang, Decheng An, Hao Song, Fubo Tian, Tian Cui. First-principles study on the conventional superconductivity of N-doped fcc-LuH3[J]. Matter and Radiation at Extremes, 2023, 8(3): 038402 Copy Citation Text show less

    Abstract

    Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3-δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.

    I. INTRODUCTION

    Hydrides have received much attention because of their excellent superconductivities under pressure.1–4 In 2014, H3S was predicted to be a high-temperature superconductor with a Tc of 191–204 K,5 which was confirmed by the experimentally measured Tc of 203 K at 155 GPa.6,7 Following this success, several superhydrides with high Tc values above 200 K, such as LaH10 (260 K, 170 GPa), YH6 (224 K, 166 GPa), YH9 (260 K, 201 GPa), and CaH6 (215 K, 172 GPa), were predicted and synthesized.8–18 Recently, Song et al.19 comprehensively studied the Lu–H system and predicted that Im3̄m-LuH6 should have a Tc of 273 K at 100 GPa. Extensive experimental research has been conducted on the superconducting properties of lutetium hydrides under pressure. Fm3̄m-LuH3 has been successfully synthesized and found to have a Tc of 12 K at 122 GPa.20 Moreover, Pm3̄n-Lu4H23 has been obtained, with a Tc of 71 K at 218 GPa.21 In particular, a very recent experimental study has reported superconductivity in the Lu–N–H system at near-ambient pressure (∼1 GPa), with the highest Tc to date of 294 K,22 thus achieving room-temperature superconductivity near ambient pressure. The authors of this study attributed the room-temperature superconductivity in the Lu–N–H system to Fm3̄m-LuH3−δNε, which can be regarded as Fm3̄m-LuH3 doped with nitrogen atoms.

    This report could represent a landmark event for the scientific community, but many open questions surrounding this important discovery remain unanswered, for example, the exact stoichiometry and the positions of the hydrogen and nitrogen atoms. A subsequent experimental observation indicates that the pressure-induced color change of LuH2 is similar to that of N-doped lutetium hydride.23 In addition, a similar compound (LuHxNy) has been synthesized, but no evidence for superconductivity at pressures ranging from 1 to 6 GPa has been found.24 Density functional theory (DFT) calculations have been used to investigate the optical properties of lutetium hydrides25 and the phase diagram of the Lu–N–H system at 0, 5, and 10 GPa,26 but no thermodynamically stable ternary compounds have been found. Therefore, an investigation of the superconducting properties of N-doped lutetium hydrides is necessary.

    In the work described in this paper, we performed a comprehensive first-principles study on the Lu–N–H system at 1 GPa. No thermodynamically stable Lu–N–H ternary compounds were found using the structure search method. We then analyzed the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. Using the Allen–Dynes-modified McMillan (A-D-M) equation, we found that the estimated highest Tc of N-doped LuH3 did not exceed 30 K, which is much lower than room temperature. In addition, we found that the doping of nitrogen atoms may slightly enhance Tc but also increase the dynamically stable pressure of LuH3.

    II. COMPUTATIONAL DETAILS

    At 1 GPa, we performed a variable-composition crystal structure search in the Lu–N–H system with ∼10 000 structures using the Ab Initio Random Structure Searching (AIRSS)27 code. We then re-optimized the structures using the ab initio calculation from the Cambridge Serial Total Energy Package (CASTEP).28 An on-the-fly ultrasoft pseudopotential with valence electrons 1s1 for H, 2s22p3 for N, and 4f145s25p65d16s2 for Lu was used, with a kinetic cutoff energy of 800 eV. The Brillouin zone was sampled using a k-point mesh of 2π × 0.03 Å−1 to make the enthalpy calculations converge well to less than 1 meV/atom. Structural relaxations were performed using projector-augmented wave (PAW)29,30 potentials, as implemented in the Vienna Ab Initio Simulation Package (VASP),31 with a cutoff energy of 600 eV. The exchange-correlation functional was described using the Perdew–Burke–Ernzerhof generalized gradient approximation.32

    We then prepared a conventional cell of Fm3̄m-LuH3, including four formula units (f.u.). The calculations were performed for a range of pseudostoichiometric Lu4HmN12−m, including Lu4H11N, Lu2H5N, Lu4H9N3, and LuH2N, which correspond to nitrogen-to-hydrogen atomic ratios of 0.09, 0.2, 0.33, and 0.5, respectively. Next, we calculated the formation enthalpies and superconducting properties of these structures at 1, 10, and 50 GPa. The formation enthalpy of Lu4HmN12−m was calculated using the following equation:Hf=H(Lu4HmN12m)4H(LuH3)mH(N)+mH(H).

    We investigated the pressure dependence of the superconductivity of Fm3̄m-LuH3 at 0.5%–2% doping with N using the VCA at pressures below 100 GPa. The VCA was performed by generating a virtual pseudopotential VVCA of H1−xNx, where VVCA = (1 − x)VH + xVN. Furthermore, we calculated the equation of state for LuH2.97N0.03, which is close to the elemental analysis data from previous experiments,22 using DFT and DFT + U (with U = 5.5 eV, which has been used for metal mononitrides22). The result is shown in Fig. S1 (supplementary material). The DFT result without the Hubbard U effect fits better with the experimental data. Therefore, the DFT level calculation for N-doped LuH3 is acceptable.

    Electronic structures, phonon spectra, and electron–phonon coupling (EPC) were calculated using the QUANTUM ESPRESSO (QE)33 package. The PAW pseudopotentials with valence electrons 1s1 for H, 2s22p3 for N, and 5s25p65d16s2 for Lu were used in the QE package. The self-consistent electron density was evaluated using a k-mesh of 20 × 20 × 20. The phonon spectra and EPC were calculated using a q-mesh of 5 × 5 × 5. The conventional superconducting transition temperature was estimated using the A-D-M equation34 with correction factors and a Coulomb pseudopotential35 with μ* = 0.10 or 0.13.

    III. RESULTS AND DISCUSSION

    We performed a random structure search in the Lu–N–H system and constructed the ternary phase diagram (convex hull) at 1 GPa [Fig. 1(a)]. Some of the binary compounds were adopted from previous papers.36–39 Notably, all predicted potential ternary compounds lie above the convex hull at 1 GPa. Thus, no ternary Lu–N–H compounds can remain thermodynamically stable at this pressure, which is consistent with the main results of Xie et al.26 In addition, P3̄m1-Lu2H2N was found with an enthalpy of ∼3 meV/atom above the convex hull. Detailed information about the structural parameters is listed in Table S1 (supplementary material). According to the inorganic crystal structure database, 20% of experimentally synthesized materials are metastable.40,41 Therefore, we calculated the x-ray diffraction (XRD) pattern for this metastable compound. Figure 1(b) shows a comparison of experimental and calculated XRD patterns. The calculated XRD pattern of P3̄m1-Lu2H2N deviates clearly from the experimental one,22 indicating that this compound does not occur in high-pressure experiments on N-doped lutetium hydride superconductors.

    (a) Ternary phase diagram (convex hull) of the Lu–N–H system at 1 GPa. The values of the enthalpy from the convex hull are shown next to the colored circles. The circles with black solid boundaries denote the stable phases. (b) Comparison of the XRD pattern from reported experimental data22 (lower black curve) and the pattern calculated for P3̄m1-Lu2H2N at ambient pressure (upper red curve). The inset shows the crystal structure of P3̄m1-Lu2H2N, with green, gray, and pink spheres depicting Lu, N, and H atoms, respectively.

    Figure 1.(a) Ternary phase diagram (convex hull) of the Lu–N–H system at 1 GPa. The values of the enthalpy from the convex hull are shown next to the colored circles. The circles with black solid boundaries denote the stable phases. (b) Comparison of the XRD pattern from reported experimental data22 (lower black curve) and the pattern calculated for P3̄m1-Lu2H2N at ambient pressure (upper red curve). The inset shows the crystal structure of P3̄m1-Lu2H2N, with green, gray, and pink spheres depicting Lu, N, and H atoms, respectively.

    Next, we investigated the doping effect on N-doped LuH3 using the supercell method. The cubic cell of Lu4HmN12−m was constructed by replacing hydrogen atoms with nitrogen atoms, for m = 8–11. For each concentration, we performed a geometry optimization on the configurations of various octahedral (O) and tetrahedral (T) sites [see Fig. 2(a)] and then calculated the total energy. Figures 2(b)2(d) show the results for the formation enthalpy of Lu4HmN12−m at different pressures. At 1 GPa, only the formation enthalpy of Lu4H11N is negative (∼−24 meV/atom), indicating that this compound may be more stable than the others. A similar situation also occurs at 10 GPa (where the formation enthalpy is ∼−32 meV/atom for Lu4H11N). Thus, only Lu4H11N is thermodynamically encouraged to be formed below 10 GPa. At 50 GPa, Lu4H11N, Lu2H5N, Lu4H9N3, and LuH2N are thermodynamically encouraged to be formed. Thus, Lu4HmN12−m with low nitrogen doping is enthalpically favored at low pressure. The doping concentration of nitrogen increases with increasing pressure. In addition, when one nitrogen atom occupies a T site, the formation enthalpy of Lu4HmN12−m at 50 GPa is the lowest. Therefore, one nitrogen atom occupying a T site in Lu4HmN12−m is enthalpically preferred.

    (a) Crystal structure of Fm3̄m-LuH3 with different types of H occupancy sites. Green spheres depict Lu atoms; pink and red spheres depict H occupancy of O and T sites, respectively. (b)–(d) Calculated enthalpy of formation of Lu4HmN12−m as a function of T-site occupancy at 1, 10, and 50 GPa, respectively. n(T) is the number of nitrogen atoms in each stoichiometry occupying T sites.

    Figure 2.(a) Crystal structure of Fm3̄m-LuH3 with different types of H occupancy sites. Green spheres depict Lu atoms; pink and red spheres depict H occupancy of O and T sites, respectively. (b)–(d) Calculated enthalpy of formation of Lu4HmN12−m as a function of T-site occupancy at 1, 10, and 50 GPa, respectively. n(T) is the number of nitrogen atoms in each stoichiometry occupying T sites.

    We then calculated the phonon spectra and superconducting properties of Lu4HmN12−m. Tc values were estimated using the A-D-M equation with correction factors (Table S2, supplementary material). At 1 and 10 GPa, Lu4HmN12−m cannot dynamically stabilize, which may be due to the thermodynamical42 and dynamical instability of the parent Fm3̄m-LuH3 [see Fig. S2(b), supplementary material]. At 50 GPa, only R3m-Lu2H5N can dynamically stabilize. The crystal structure, phonon spectrum, and EPC of R3m-Lu2H5N are illustrated in Fig. 3. R3m-Lu2H5N (Lu4H10N2) can be regarded as Fm3̄m-LuH3 with two nitrogen atoms substituting its T and O sites, respectively. The calculated phonon spectrum and EPC show that the contributions of medium- and low-frequency phonons (13–25 THz) to the EPC are the highest (about 46% to total λ), whereas high-frequency phonons (45–55 THz) make hardly any contribution. Thus, the EPC of R3m-Lu2H5N is primarily contributed by medium- and low-frequency phonons. The calculated EPC parameter λ for R3m-Lu2H5N at 50 GPa in the harmonic approximation is 0.82. Using the calculated logarithmic average frequency ωlog, along with a Coulomb pseudopotential μ* value of 0.1, the resultant Tc value is 27 K.

    (a) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for R3m-Lu2H5N at 50 GPa. The magnitudes of the phonon linewidths are represented by the sizes of the blue circles. (b) and (c) Crystal structures of R3m-Lu2H5N in the framework of Fm3̄m-LuH3 and the conventional cell, respectively. Green, gray, and pink spheres depict Lu, N, and H atoms, respectively.

    Figure 3.(a) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for R3m-Lu2H5N at 50 GPa. The magnitudes of the phonon linewidths are represented by the sizes of the blue circles. (b) and (c) Crystal structures of R3m-Lu2H5N in the framework of Fm3̄m-LuH3 and the conventional cell, respectively. Green, gray, and pink spheres depict Lu, N, and H atoms, respectively.

    In the case of low nitrogen doping concentrations, we used the VCA method to investigate the pressure dependence of Tc in N-doped Fm3̄m-LuH3. Figure 4(a) shows the dependence of the minimum dynamically stable pressure on the N-doping concentration. We find that the minimum dynamically stable pressure of N-doped Fm3̄m-LuH3 increases from 25 to 70 GPa when the doping concentration increases from 0% to 2%. Thus, doping with N atoms will raise the dynamically stable pressure of LuH3. Through a softening mechanism,43 pressure can affect Tc by altering the electron–phonon constant λ. Therefore, we calculated the Tc of N-doped LuH3 with doping concentrations ranging from 0% to 1.5% at 50 GPa [see Fig. 4(b)] to investigate the effects of doping with nitrogen atoms on superconductivity. Our simulations show that the lowest Tc is 4 K for LuH3 without doping. In addition, Tc increases with increasing N-doping concentration; thus, doping N atoms into LuH3 will increase Tc. However, the highest Tc in this VCA calculation is 22 K, obtained with 1% N-doping at 30 GPa (see Table S2, supplementary material), which is much lower than room temperature. Notably, the anharmonicity correction to the atomic motions imposed by the large ionic quantum fluctuation will renormalize the phonon frequency in hydrogen-based superconductors. Therefore, the anharmonic effect may potentially decrease the dynamically stable pressure of N-doped LuH3 and affect Tc, which requires further theoretical investigation in this system.

    (a) Dependence of minimum dynamically stable pressure on N-doping concentration. (b) Dependence of Tc on N-doping concentration at 50 GPa. The Coulomb pseudopotential uses μ* = 0.10.

    Figure 4.(a) Dependence of minimum dynamically stable pressure on N-doping concentration. (b) Dependence of Tc on N-doping concentration at 50 GPa. The Coulomb pseudopotential uses μ* = 0.10.

    We calculated the band structure and density of states (DOS) of LuH3 and LuH2.97N0.03 (1% N-doped) at 50 GPa [Fig. 5(a)]. The finite DOS at the Fermi level indicates the metallic nature of these structures. LuH3 has a DOS N(ϵF) that reaches 0.269 states eV−1 f.u.−1 at the Fermi level. Doping N atoms into LuH3 will raise the Fermi level and cause the bands near the Γ point to fall on top of the Fermi level. Consequently, the Fermi level can be moved closer to the DOS peak, and N(ϵF) will then increase to 0.6 states eV−1 f.u.−1 Therefore, doping by N atoms can significantly enhance the metallic characteristic of LuH3 by moving the Fermi level closer to the DOS peak.

    (a) Electronic band structure and DOS (states eV−1 f.u.−1) of LuH3 (solid black curves) and LuH2.97N0.03 (solid red curves) at 50 GPa. The grey solid horizontal line indicates the Fermi energy. (b) and (c) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for LuH3 and LuH2.97N0.03, respectively, at 50 GPa. The magnitudes of the phonon linewidths are represented by the sizes of the blue circles.

    Figure 5.(a) Electronic band structure and DOS (states eV−1 f.u.−1) of LuH3 (solid black curves) and LuH2.97N0.03 (solid red curves) at 50 GPa. The grey solid horizontal line indicates the Fermi energy. (b) and (c) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for LuH3 and LuH2.97N0.03, respectively, at 50 GPa. The magnitudes of the phonon linewidths are represented by the sizes of the blue circles.

    We then examined the phonon spectra and EPC of LuH3 and LuH2.97N0.03 at 50 GPa [Figs. 5(b) and 5(c)]. In LuH3, the electron–phonon constant λ is primarily contributed by the optical branch (λopt), which accounts for ∼69% of the total λ. Conversely, the acoustic branch (λac) makes a much smaller contribution to λ, accounting for ∼31% of the total λ. Doping by nitrogen atoms at 1% concentration increases λac from 0.137 to 0.268, while λopt remains almost unchanged. Therefore, the increased Tc of N-doped LuH3 can be attributed to the enhancement of λac. Interestingly, the optical branch with a frequency of ∼21 THz along the W–L–Γ direction in LuH3 varies slightly with the wave vector q in the Brillouin zone. However, a significant softening of this phonon mode is observed after doping by nitrogen atoms [Fig. 5(c)]. When the pressure decreases to 25 GPa (Fig. S4, supplementary material), the imaginary phonon frequency occurs near the L point, which indicates that the optical branch softening induced by N doping is responsible for the reduced stability of LuH3.

    IV. CONCLUSIONS

    We performed a first-principles study on the Lu–N–H system and found no stable ternary compounds at 1 GPa. We then analyzed N-doped Fm3̄m-LuH3 using supercell and VCA methods. The result of the supercell method indicates that R3m-Lu2H5N can be dynamically stable at 50 GPa, with a Tc of 27 K. The VCA results indicate that the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. In addition, doping with nitrogen atoms slightly increases the Tc of Fm3̄m-LuH3 by enhancing the EPC of acoustic phonons. However, this doping effect also leads to significant phonon softening and increases the dynamically stable pressure of LuH3. Finally, within the pressure range investigated in our study, the highest Tc of N-doped Fm3̄m-LuH3 does not exceed 30 K, which is much lower than room temperature. Our theoretical calculations were performed using standard DFT parameters and assuming conventional superconductivity, and calculations considering more corrections, including strong electron correlations, spin–orbit coupling, the anharmonicity effect, and unconventional mechanisms of superconductivity are required in the future.

    SUPPLEMENTARY MATERIAL

    ACKNOWLEDGMENTS

    Acknowledgment. This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305900 and 2022YFA1402304), the National Natural Science Foundation of China (Grant Nos. 12122405, 52072188, and 12274169), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R23), and a Jilin Provincial Science and Technology Development Project (Grant No. 20210509038RQ). Some of the calculations were performed at the High Performance Computing Center of Jilin University and on TianHe-1(A) at the National Supercomputer Center in Tianjin.

    References

    [1] C. J.Pickard, J.Pickard C., I.Errea, M. and, I.Errea, J.Pickard C., I.Errea, M. and, M. I.Eremets. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys., 11, 57(2020).

    [2] D.Duan, D.Duan, Y.Liu, Y.Ma, Z.Shao, B.Liu, T.Cui and, Y.Liu, D.Duan, Y.Liu, Y.Ma, Z.Shao, B.Liu, T.Cui and, Y.Ma, D.Duan, Y.Liu, Y.Ma, Z.Shao, B.Liu, T.Cui and, Z.Shao, D.Duan, Y.Liu, Y.Ma, Z.Shao, B.Liu, T.Cui and, B.Liu, D.Duan, Y.Liu, Y.Ma, Z.Shao, B.Liu, T.Cui and, T.Cui. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 4, 121(2017).

    [3] X.Zhang, X.Zhang, Y.Zhao, F.Li, G.Yang and, Y.Zhao, X.Zhang, Y.Zhao, F.Li, G.Yang and, F.Li, X.Zhang, Y.Zhao, F.Li, G.Yang and, G.Yang. Pressure-induced hydride superconductors above 200 K. Matter Radiat. Extremes, 6, 068201(2021).

    [4] H.-K.Mao. Hydrogen and related matter in the pressure dimension. Matter Radiat. Extremes, 7, 063001(2022).

    [5] D.Duan, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, Y.Liu, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, F.Tian, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, D.Li, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, X.Huang, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, Z.Zhao, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, H.Yu, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, B.Liu, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, W.Tian, D.Duan, Y.Liu, F.Tian, D.Li, X.Huang, Z.Zhao, H.Yu, B.Liu, W.Tian, T.Cui and, T.Cui. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).

    [6] A. P.Drozdov, P.Drozdov A., I.Eremets M., A.Troyan I., V.Ksenofontov, S. and, M. I.Eremets, P.Drozdov A., I.Eremets M., A.Troyan I., V.Ksenofontov, S. and, I. A.Troyan, P.Drozdov A., I.Eremets M., A.Troyan I., V.Ksenofontov, S. and, V.Ksenofontov, P.Drozdov A., I.Eremets M., A.Troyan I., V.Ksenofontov, S. and, S. I.Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73(2015).

    [7] M.Einaga, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, M.Sakata, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, T.Ishikawa, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, K.Shimizu, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, M. I.Eremets, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, A. P.Drozdov, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, I. A.Troyan, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, N.Hirao, M.Einaga, M.Sakata, T.Ishikawa, K.Shimizu, I.Eremets M., P.Drozdov A., A.Troyan I., N.Hirao, Y.Ohishi and, Y.Ohishi. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 12, 835(2016).

    [8] F.Peng, F.Peng, Y.Sun, J.Pickard C., J.Needs R., Q.Wu, Y.Ma and, Y.Sun, F.Peng, Y.Sun, J.Pickard C., J.Needs R., Q.Wu, Y.Ma and, C. J.Pickard, F.Peng, Y.Sun, J.Pickard C., J.Needs R., Q.Wu, Y.Ma and, R. J.Needs, F.Peng, Y.Sun, J.Pickard C., J.Needs R., Q.Wu, Y.Ma and, Q.Wu, F.Peng, Y.Sun, J.Pickard C., J.Needs R., Q.Wu, Y.Ma and, Y.Ma. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).

    [9] H.Liu, H.Liu, I.Naumov I., R.Hoffmann, W.Ashcroft N., R. and, I. I.Naumov, H.Liu, I.Naumov I., R.Hoffmann, W.Ashcroft N., R. and, R.Hoffmann, H.Liu, I.Naumov I., R.Hoffmann, W.Ashcroft N., R. and, N. W.Ashcroft, H.Liu, I.Naumov I., R.Hoffmann, W.Ashcroft N., R. and, R. J.Hemley. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990(2017).

    [10] A. P.Drozdov, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, P. P.Kong, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, V. S.Minkov, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, S. P.Besedin, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, M. A.Kuzovnikov, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, S.Mozaffari, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, L.Balicas, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, F. F.Balakirev, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, D. E.Graf, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, V. B.Prakapenka, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, E.Greenberg, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, D. A.Knyazev, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, M.Tkacz, P.Drozdov A., P.Kong P., S.Minkov V., P.Besedin S., A.Kuzovnikov M., S.Mozaffari, L.Balicas, F.Balakirev F., E.Graf D., B.Prakapenka V., E.Greenberg, A.Knyazev D., M.Tkacz, M. and, M. I.Eremets. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).

    [11] M.Somayazulu, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, M.Ahart, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, A. K.Mishra, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, Z. M.Geballe, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, M.Baldini, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, Y.Meng, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, V. V.Struzhkin, M.Somayazulu, M.Ahart, K.Mishra A., M.Geballe Z., M.Baldini, Y.Meng, V.Struzhkin V., R. and, R. J.Hemley. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [12] X.Li, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, X.Huang, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, D.Duan, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, C. J.Pickard, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, D.Zhou, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, H.Xie, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, Q.Zhuang, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, Y.Huang, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, Q.Zhou, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, B.Liu, X.Li, X.Huang, D.Duan, J.Pickard C., D.Zhou, H.Xie, Q.Zhuang, Y.Huang, Q.Zhou, B.Liu, T.Cui and, T.Cui. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure. Nat. Commun., 10, 3461(2019).

    [13] F.Hong, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, L.Yang, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, P.Shan, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, P.Yang, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, Z.Liu, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, J.Sun, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, Y.Yin, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, X.Yu, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, J.Cheng, F.Hong, L.Yang, P.Shan, P.Yang, Z.Liu, J.Sun, Y.Yin, X.Yu, J.Cheng, Z.Zhao and, Z.Zhao. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett., 37, 107401(2020).

    [14] H.Xie, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, Y.Yao, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, X.Feng, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, D.Duan, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, H.Song, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, Z.Zhang, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, S.Jiang, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, S. A. T.Redfern, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, V. Z.Kresin, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, C. J.Pickard, H.Xie, Y.Yao, X.Feng, D.Duan, H.Song, Z.Zhang, S.Jiang, A. S., Z.Kresin V., J.Pickard C., T.Cui and, T.Cui. Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 125, 217001(2020).

    [15] P.Kong, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, V. S.Minkov, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, M. A.Kuzovnikov, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, A. P.Drozdov, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, S. P.Besedin, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, S.Mozaffari, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, L.Balicas, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, F. F.Balakirev, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, V. B.Prakapenka, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, S.Chariton, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, D. A.Knyazev, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, E.Greenberg, P.Kong, S.Minkov V., A.Kuzovnikov M., P.Drozdov A., P.Besedin S., S.Mozaffari, L.Balicas, F.Balakirev F., B.Prakapenka V., S.Chariton, A.Knyazev D., E.Greenberg, M. and, M. I.Eremets. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun., 12, 5075(2021).

    [16] Z.Zhang, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, T.Cui, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, M. J.Hutcheon, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, A. M.Shipley, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, H.Song, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, M.Du, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, V. Z.Kresin, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, D.Duan, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, C. J.Pickard, Z.Zhang, T.Cui, J.Hutcheon M., M.Shipley A., H.Song, M.Du, Z.Kresin V., D.Duan, J.Pickard C., Y.Yao and, Y.Yao. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 128, 047001(2022).

    [17] L.Ma, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, K.Wang, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, Y.Xie, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, X.Yang, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, Y.Wang, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, M.Zhou, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, H.Liu, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, X.Yu, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, Y.Zhao, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, H.Wang, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, G.Liu, L.Ma, K.Wang, Y.Xie, X.Yang, Y.Wang, M.Zhou, H.Liu, X.Yu, Y.Zhao, H.Wang, G.Liu, Y.Ma and, Y.Ma. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett., 128, 167001(2022).

    [18] M.Du, M.Du, H.Song, Z.Zhang, D.Duan, T.Cui and, H.Song, M.Du, H.Song, Z.Zhang, D.Duan, T.Cui and, Z.Zhang, M.Du, H.Song, Z.Zhang, D.Duan, T.Cui and, D.Duan, M.Du, H.Song, Z.Zhang, D.Duan, T.Cui and, T.Cui. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure. Research, 2022, 9784309.

    [19] H.Song, H.Song, Z.Zhang, T.Cui, J.Pickard C., Z.Kresin V., D.Duan and, Z.Zhang, H.Song, Z.Zhang, T.Cui, J.Pickard C., Z.Kresin V., D.Duan and, T.Cui, H.Song, Z.Zhang, T.Cui, J.Pickard C., Z.Kresin V., D.Duan and, C. J.Pickard, H.Song, Z.Zhang, T.Cui, J.Pickard C., Z.Kresin V., D.Duan and, V. Z.Kresin, H.Song, Z.Zhang, T.Cui, J.Pickard C., Z.Kresin V., D.Duan and, D.Duan. High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett., 38, 107401(2021).

    [20] M.Shao, M.Shao, S.Chen, W.Chen, K.Zhang, X.Huang, T.Cui and, S.Chen, M.Shao, S.Chen, W.Chen, K.Zhang, X.Huang, T.Cui and, W.Chen, M.Shao, S.Chen, W.Chen, K.Zhang, X.Huang, T.Cui and, K.Zhang, M.Shao, S.Chen, W.Chen, K.Zhang, X.Huang, T.Cui and, X.Huang, M.Shao, S.Chen, W.Chen, K.Zhang, X.Huang, T.Cui and, T.Cui. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem., 60, 15330(2021).

    [21] Z.Li, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, X.He, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, C.Zhang, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, K.Lu, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, B.Bin, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, J.Zhang, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, S.Zhang, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, J.Zhao, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, L.Shi, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, S.Feng, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, X.Wang, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, Y.Peng, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, R.Yu, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, L.Wang, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, Y.Li, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, J.Bass, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, V.Prakapenka, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, S.Chariton, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, H.Liu, Z.Li, X.He, C.Zhang, K.Lu, B.Bin, J.Zhang, S.Zhang, J.Zhao, L.Shi, S.Feng, X.Wang, Y.Peng, R.Yu, L.Wang, Y.Li, J.Bass, V.Prakapenka, S.Chariton, H.Liu, C.Jin and, C.Jin. Superconductivity above 70 K experimentally discovered in lutetium polyhydride. Sci. China Phys. Mech, 66, 267411(2023).

    [22] N.Dasenbrock-Gammon, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, E.Snider, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, R.McBride, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, H.Pasan, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, D.Durkee, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, N.Khalvashi-Sutter, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, S.Munasinghe, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, S. E.Dissanayake, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, K. V.Lawler, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, A.Salamat, N.Dasenbrock-Gammon, E.Snider, R.McBride, H.Pasan, D.Durkee, N.Khalvashi-Sutter, S.Munasinghe, E.Dissanayake S., V.Lawler K., A.Salamat, R. and, R. P.Dias. Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 615, 244(2023).

    [23] P.Shan, P.Shan, N.Wang, X.Zheng, Q.Qiu, Y.Peng, J.Cheng and, N.Wang, P.Shan, N.Wang, X.Zheng, Q.Qiu, Y.Peng, J.Cheng and, X.Zheng, P.Shan, N.Wang, X.Zheng, Q.Qiu, Y.Peng, J.Cheng and, Q.Qiu, P.Shan, N.Wang, X.Zheng, Q.Qiu, Y.Peng, J.Cheng and, Y.Peng, P.Shan, N.Wang, X.Zheng, Q.Qiu, Y.Peng, J.Cheng and, J.Cheng. Pressure-induced color change in the lutetium dihydride LuH2. Chin. Phys. Lett., 40, 046101(2023).

    [24] X.Ming, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, Y.-J.Zhang, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, X.Zhu, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, Q.Li, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, C.He, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, Y.Liu, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, B.Zheng, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, H.Yang, X.Ming, Y.-J.Zhang, X.Zhu, Q.Li, C.He, Y.Liu, B.Zheng, H.Yang, H.-H.Wen and, H.-H.Wen. Absence of near-ambient superconductivity in LuH2±xNy(2023).

    [25] M.Liu, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, X.Liu, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, J.Li, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, J.Liu, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, Y.Sun, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, X.-Q.Chen, M.Liu, X.Liu, J.Li, J.Liu, Y.Sun, X.-Q.Chen, P.Liu and, P.Liu. On parent structures of near-ambient nitrogen-doped lutetium hydride superconductor(2023).

    [26] F.Xie, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, T.Lu, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, Z.Yu, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, Y.Wang, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, Z.Wang, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, S.Meng, F.Xie, T.Lu, Z.Yu, Y.Wang, Z.Wang, S.Meng, M.Liu and, M.Liu. Lu-H-N phase diagram from first-principles calculations. Chin. Phys. Lett, 40, 057401(2023).

    [27] C. J.Pickard, J.Pickard C., R. J.Needs. Ab initio random structure searching. J. Phys.: Condens. Matter, 23, 053201(2011).

    [28] M. D.Segall, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, P. J. D.Lindan, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, M. J.Probert, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, C. J.Pickard, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, P. J.Hasnip, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, S. J.Clark, D.Segall M., J. P., J.Probert M., J.Pickard C., J.Hasnip P., J.Clark S., M. and, M. C.Payne. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14, 2717(2002).

    [29] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).

    [30] G.Kresse, and G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758(1999).

    [31] G.Kresse, and G.Kresse, J.Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15(1996).

    [32] J. P.Perdew, P.Perdew J., K.Burke, M.Ernzerhof and, K.Burke, P.Perdew J., K.Burke, M.Ernzerhof and, M.Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).

    [33] P.Giannozzi, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., S.Baroni, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., N.Bonini, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., M.Calandra, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., R.Car, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., C.Cavazzoni, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., D.Ceresoli, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., G. L.Chiarotti, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., M.Cococcioni, P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, L.Chiarotti G., M.Cococcioni, I.Daboet?al., I.Daboet?al.. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 21, 395502(2009).

    [34] P. B.Allen, B.Allen P., R. C.Dynes. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 12, 905(1975).

    [35] P.Morel, and P.Morel, P. W.Anderson. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev., 125, 1263(1962).

    [36] J. E.Bonnet, E.Bonnet J., J. N.Daou. Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation. J. Appl. Phys., 48, 964(1977).

    [37] M.Mansmann, and M.Mansmann, W. E.Wallace. The structure of HoD3. J. Phys. France, 25, 454(1964).

    [38] W.Klemm, and W.Klemm, G.Winkelmann. Zur kenntnis der nitride der seltenen erdmetalle. Z. Anorg. Allg. Chem., 288, 87(1956).

    [39] R.Boese, R.Boese, N.Niederprüm, D.Bl?ser, A.Maulitz, Y.Antipin M., P. and, N.Niederprüm, R.Boese, N.Niederprüm, D.Bl?ser, A.Maulitz, Y.Antipin M., P. and, D.Bl?ser, R.Boese, N.Niederprüm, D.Bl?ser, A.Maulitz, Y.Antipin M., P. and, A.Maulitz, R.Boese, N.Niederprüm, D.Bl?ser, A.Maulitz, Y.Antipin M., P. and, M. Y.Antipin, R.Boese, N.Niederprüm, D.Bl?ser, A.Maulitz, Y.Antipin M., P. and, P. R.Mallinson. Single-crystal structure and electron density distribution of ammonia at 160 K on the basis of X-ray diffraction data. J. Phys. Chem. B, 101, 5794(1997).

    [40] Y.Hinuma, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, T.Hatakeyama, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, Y.Kumagai, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, L. A.Burton, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, H.Sato, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, Y.Muraba, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, S.Iimura, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, H.Hiramatsu, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, I.Tanaka, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, H.Hosono, Y.Hinuma, T.Hatakeyama, Y.Kumagai, A.Burton L., H.Sato, Y.Muraba, S.Iimura, H.Hiramatsu, I.Tanaka, H.Hosono, F.Oba and, F.Oba. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun., 7, 11962(2016).

    [41] Y.Wu, Y.Wu, P.Lazic, G.Hautier, K.Persson, G.Ceder and, P.Lazic, Y.Wu, P.Lazic, G.Hautier, K.Persson, G.Ceder and, G.Hautier, Y.Wu, P.Lazic, G.Hautier, K.Persson, G.Ceder and, K.Persson, Y.Wu, P.Lazic, G.Hautier, K.Persson, G.Ceder and, G.Ceder. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci., 6, 157(2013).

    [42] T.Palasyuk, and T.Palasyuk, M.Tkacz. Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3). Solid State Commun., 133, 481(2005).

    [43] W. L.McMillan. Transition temperature of strong-coupled superconductors. Phys. Rev., 167, 331(1968).

    Zihao Huo, Defang Duan, Tiancheng Ma, Zihan Zhang, Qiwen Jiang, Decheng An, Hao Song, Fubo Tian, Tian Cui. First-principles study on the conventional superconductivity of N-doped fcc-LuH3[J]. Matter and Radiation at Extremes, 2023, 8(3): 038402
    Download Citation