• Optoelectronics Letters
  • Vol. 12, Issue 2, 148 (2016)
Yuan-yuan ZHOU*, Xue-jun ZHOU, and Bin-bin SU
Author Affiliations
  • Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China
  • show less
    DOI: 10.1007/s11801-016-5275-3 Cite this Article
    ZHOU Yuan-yuan, ZHOU Xue-jun, SU Bin-bin. A measurement-device-independent quantum key distribution protocol with a heralded single photon source[J]. Optoelectronics Letters, 2016, 12(2): 148 Copy Citation Text show less

    Abstract

    With a heralded single photon source (HSPS), a measurement-device-independent quantum key distribution (MDIQKD) protocol is proposed, combined with a three-intensity decoy-state method. HSPS has the two-mode characteristic, one mode is used as signal mode, and the other is used as heralded mode to reduce the influence of the dark count. The lower bound of the yield and the upper bound of the error rate are deduced and the performance of the MDI-QKD protocol with an HSPS is analyzed. The simulation results show that the MDI-QKD protocol with an HSPS can achieve a key generation rate and a secure transmission distance which are close to the theoretical limits of the protocol with a single photon source (SPS). Moreover, the key generation rate will improve with the raise of the senders’ detection efficiency. The key generation rate of the MDI-QKD protocol with an HSPS is a little less than that of the MDI-QKD protocol with a weak coherent source (WCS) in the close range, but will exceed the latter in the far range. Furthermore, a farther transmission distance is obtained due to the two-mode characteristic of HSPS.
    ZHOU Yuan-yuan, ZHOU Xue-jun, SU Bin-bin. A measurement-device-independent quantum key distribution protocol with a heralded single photon source[J]. Optoelectronics Letters, 2016, 12(2): 148
    Download Citation