
- Chinese Optics Letters
- Vol. 20, Issue 7, 070201 (2022)
Abstract
Keywords
1. Introduction
Lasers with high-frequency stability and narrow linewidth are indispensable tools in optical atomic clocks[
In terms of long-term robust operation, some of the ultra-stable laser systems have achieved a continuous operation time for more than 10 days with analog proportional integral derivative (PID) controllers[
To achieve automatic frequency locking and relocking, digital control is usually employed[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
However, in servo systems (also called PID controller or loop filter), there are two ways in dealing with the error signal for correcting the laser frequency. Either an all-digital PID controller[
In this Letter, we use analog-digital hybrid PID controllers to realize automatic laser frequency locking while enjoying the merits of wide servo bandwidth and high servo accuracy. Two Nd:YAG lasers are automatically frequency-stabilized to the resonance of two high-finesse, transportable optical cavities with the help of analog-digital hybrid PID controllers. The laser frequency can be locked over more than 11 days, and it can be relocked in 0.3 s when perturbations break laser frequency locking. By frequency comparison, each laser is measured to have a frequency instability of
2. Experimental Setup
The experimental setup for laser frequency stabilization is shown in Fig. 1. It is similar to our previous work[
Figure 1.Schematic diagram of the experimental setup for automatic laser frequency stabilization based on an analog-digital hybrid PID controller. FNC, fiber noise cancellation; PM fiber, polarization maintaining optical fiber; AOM, acousto-optic modulator; P1 and P2, polarizers; EOM, electro-optic modulator; ISO, optical isolator; λ/4, quarter-wave plate; PD, photo-detector; LPF, low pass filter; ADC, analog to digital converter; CMOS SW, CMOS analog switch; Digi-POT, digital potentiometer; PZT, piezo transducer.
In the setup of laser frequency stabilization, the laser light output from the PM fiber is frequency-shifted by an acoustic-optic modulator (AOM). The driving power of the AOM is adjusted for light power stabilization by monitoring the voltage from a photo-detector (
In the analog-digital hybrid PID controller, the amplified PDH signal is converted to a digital signal (
3. Methods and Results
The logical block diagram of automatic laser frequency locking is shown in Fig. 2(a). Firstly, we set the values of
Figure 2.(a) Logic block diagram of automatic laser frequency locking. (b) The PDH signal and the cavity reflection signal with UPDH-0 and Ur-0 marked.
The locking process can be separated into five phases. In Phase I, the laser frequency is coarsely scanned by a step of
In Phase II, the laser frequency is finely scanned with a frequency step of
Figure 3(a) shows the recorded
Figure 3.(a) Signal of UPZT, UPDH, and Ur when the laser frequency starts to lock. (b) Statistics of laser frequency relocking time.
We tested laser frequency relocking capability by blocking for 5 ms and unblocking the laser light. It is realized by turning off and on the driving signal of the AOM. We tested it for more than
To characterize the performance of the automatic laser frequency stabilization system, we build two similar laser systems, which are separately stabilized to two reference cavities on the same spacer[
Figure 4.(a) Recorded beating frequency between two automatic frequency-locking laser systems at 1064 nm over 22 days. The inset shows the frequency instability of four sub-datasets. (b) The frequency instability of the beat note between two automatic frequency-locking laser systems at 1064 nm (Lasers #1 and #2, blue dots) and between Laser #1 and a cavity-stabilized 578 nm laser (red squares). The black dashed line indicates the thermal noise-limited laser frequency instability for a single 1064 nm laser. (c) Distribution of the linewidth measurement of the beat note between Lasers #1 and #2 measured on an FFT spectrum analyzer with a resolution bandwidth of 122 mHz. The inset shows one of the measurements.
After deleting the data points when the lasers lost frequency locking, we calculate the Allan deviation of the beating frequency, which is shown in Fig. 4(b) with blue dots. The frequency instability of the beat note reaches
We also measured the frequency instability of the automatic frequency-locking laser system at 1064 nm (#1) by comparing it against a cavity-stabilized laser at 578 nm via an optical frequency comb[
We recorded the spectrum of the beat note between two 1064 nm cavity-stabilized lasers on a fast Fourier transform (FFT) spectrum analyzer with a resolution bandwidth of 122 mHz. By fitting each spectrum, we obtain the linewidth of the beat note. The inset of Fig. 4(c) shows one of the linewidth measurements. The distribution of the measured laser linewidth is shown in Fig. 4(c). The most probable linewidth is 0.45 Hz. Therefore, each laser has a probable linewidth of 0.3 Hz, assuming the laser systems have low correlation.
4. Conclusion
We demonstrate two automatic frequency-locking laser systems based on analog-digital hybrid PID controllers. The laser frequency can be automatically locked to its reference cavity, and it can be relocked in 0.3 s when there is a disturbance. Each laser system is measured to have a frequency instability of
References
[1] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 87, 637(2015).
[2] Y. Li, Y. Lin, Q. Wang, T. Yang, Z. Sun, E. Zang, Z. Fang. An improved strontium lattice clock with 10–16 level laser frequency stabilization. Chin. Opt. Lett., 16, 051402(2018).
[3] B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Puncken, R. L. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Webels, L. Winkelmann. Stabilized lasers for advanced gravitational wave detectors. Class. Quantum Grav., 25, 114040(2008).
[4] Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, L. Ma. A low noise optical frequency synthesizer at 700–990 nm. Appl. Phys. Lett., 109, 131102(2016).
[5] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425(2011).
[6] S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, A. Peters. Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level. Phys. Rev. D, 80, 105011(2009).
[7] F. Zhang, K. Liu, Z. Li, F. Cheng, X. Feng, K. Li, Z. Lu, J. Zhang. Long-term digital frequency-stabilized laser source for large-scale passive laser gyroscopes. Rev. Sci. Instrum., 91, 013001(2020).
[8] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).
[9] B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist. Visible lasers with subhertz linewidths. Phys. Rev. Lett., 82, 3799(1999).
[10] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photonics, 5, 158(2011).
[11] B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli. Prototype of an ultra-stable optical cavity for space applications. Opt. Express, 20, 25409(2012).
[12] Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, H. Jiang. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth. Chin. Phys. Lett., 34, 090602(2017).
[13] N. Nemitz, T. Ohkubo, M. Takamto, I. Ushijima, M. Das, N. Ohmae, H. Katori. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat. Photonics, 10, 258(2016).
[14] L. Jin, Y. Jiang, Y. Yao, H. Yu, Z. Bi, L. Ma. Laser frequency instability of 2 × 10−16 by stabilizing to 30-cm-long Fabry-Pérot cavities at 578 nm. Opt. Express, 26, 18699(2018).
[15] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).
[16] W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, J. Ye. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett., 119, 243601(2017).
[17] S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, U. Sterr. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett., 40, 2112(2015).
[18] K. Numata, A. Kemery, J. Camp. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett., 93, 250602(2004).
[19] M. A. Norcia, J. R. K. Cline, J. A. Muniz, J. M. Robinson, R. B. Hutson, A. Goban, G. E. Marti, J. Ye, J. K. Thompson. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X, 8, 021036(2018).
[20] L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, L. S. Ma. Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing. Appl. Phys. Lett., 114, 051104(2019).
[21] D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, J. C. Bergquist. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express, 19, 3471(2011).
[22] S. Webster, P. Gill. Force-insensitive optical cavity. Opt. Lett., 36, 3572(2011).
[23] Q.-F. Chen, A. Nevsky, M. Cardace, S. Schiller, T. Legero, S. Häfner, A. Uhde, U. Sterr. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15. Rev. Sci. Instrum., 85, 113107(2014).
[24] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).
[25] J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, Ch. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, D. Calonico. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437(2018).
[26] M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, H. Katori. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics, 14, 411(2020).
[27] H. Chen, Y. Jiang, S. Fang, Z. Bi, L. Ma. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz. J. Opt. Soc. Am. B, 30, 1546(2013).
[28] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-T. Gong, S. Hu, J. Li, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C.-G. Shao, V. T. Toth, H.-B. Tu, Y. Wang, Y. Wang, H.-C. Yeh, M.-S. Zhan, Y. Zhang, V. Zharov, Z.-B. Zhou. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav., 33, 035010(2016).
[29] B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, W. M. Folkner. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geodesy, 86, 1083(2012).
[30] Y. Luo, H. Li, H.-C. Yeh. Note: digital laser frequency auto-locking for inter-satellite laser ranging. Rev. Sci. Instrum., 87, 056105(2016).
[31] F. Allard, I. Maksimovic, M. Abgrall, Ph. Laurent. Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum., 75, 54(2004).
[32] X. Guo, L. Zhang, J. Liu, L. Chen, L. Fan, G. Xu, T. Liu, R. Dong, S. Zhang. An automatic frequency stabilized laser with hertz-level linewidth. Opt. Laser Technol., 145, 107498(2022).
[33] A. Didier, S. Ignatovich, E. Benkler, M. Okhapkin, T. E. Mehlstäubler. 946-nm Nd:YAG digital-locked laser at 1.1×10−16 in 1 s and transfer-locked to a cryogenic silicon cavity. Opt. Lett., 44, 1781(2019).
[34] L. S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777(1994).
[35] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10–21 level. Natl. Sci. Rev., 3, 463(2016).
[36] G. Yang, H. Shi, Y. Yao, H. Yu, Y. Jiang, A. Bartels, L. Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser. Chin. Opt. Lett., 19, 121405(2021).

Set citation alerts for the article
Please enter your email address