
- Photonics Research
- Vol. 9, Issue 10, 1916 (2021)
Abstract
1. INTRODUCTION
Metal halide perovskites (i.e.,
In order to optimize the stability of perovskite NCs, several different means have been employed [21–25]. Protesescu
Although researchers have recently worked hard to adjust the ASE thresholds of perovskite NCs by adding organic molecular additives [35], zinc oxide nanoparticles [36], silver nanoparticles, [37], and changing the morphology and roughness of the sample [38], particle size also plays a vital role in regulating the ASE thresholds [39]. Fortunately, the size of perovskite NCs can be adjusted by controlling the doping of metal ions and the heat treatment temperatures. Furthermore, there are few reports linking the doping of metal ions and heat treatment conditions with the ASE thresholds of perovskite NCs at the same time. Based on the above, it is necessary to prepare a series of Gd-doped
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
In this work, a series of Gd-doped
2. EXPERIMENT
A. Materials
Cesium carbonate (
B. Synthesis of Gd-Doped
ZnO (molar percentage: 14.27%),
C. Characterization
Using Bruker D8 Advance measurement, the phase structure of the samples was characterized by X-ray diffraction (XRD). It is pointed out that the
3. RESULTS AND DISCUSSION
The network structure of borosilicate glass is silicon oxide tetrahedron, which is mainly composed of bridged and non-bridged oxygen bonds. In the precursor borosilicate glass,
Figure 1.(a) PL spectra. (b) Spectra plotted as
Next, the phase structure and microstructure of Gd-doped
Figure 2.(a) TEM image of Gd-doped
The particle size of
Figure 3.(a) XRD patterns, (b) PL spectra, (c) UV-vis absorption spectra. (d) Spectra plotted as
The quality of the prepared perovskite NCs should be considered, including good optical properties and good stability. Therefore, it is necessary to test the hydrothermal stability of Gd-doped
Figure 4.(a) PL intensity measured during heating, cooling, and reheating. (b) Time-dependent PL intensity. (c) Luminescent photographs of S3 stored in water for different times.
The laser mechanism of Gd-doped
Figure 5.(a), (c), (e), (g) Pump intensity-dependent PL spectra under increasing 800 nm fs pulsed excitation fluence from the Gd-doped
The effect of Gd-doped
Figure 6.(a)–(c) Pump intensity-dependent PL spectra under increasing 800 nm fs pulsed excitation fluence from the Gd-doped
4. CONCLUSION
In summary, a series of Gd-doped
References
[1] H. Chen, F. Zhou, Z. Jin. Interface engineering, the trump-card for CsPbX3 (X = I, Br) perovskite solar cells development. Nano Energy, 79, 105490(2021).
[2] J. Lin, Y. Lu, X. Li, F. Huang, C. Yang, M. Liu, N. Jiang, D. Chen. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett., 6, 519-528(2021).
[3] X. Xiang, H. Lin, J. Xu, Y. Cheng, C. Wang, L. Zhang, Y. Wang. CsPb(Br,I)3 embedded glass: fabrication, tunable luminescence, improved stability and wide-color gamut LCD application. Chem. Eng. J., 378, 122255(2019).
[4] F. Zhou, Z. Li, H. Chen, Q. Wang, L. Ding, Z. Jin. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 73, 104757(2020).
[5] V. Neplokh, D. I. Markina, M. Baeva, A. M. Pavlov, D. A. Kirilenko, I. S. Mukhin, A. P. Pushkarev, S. V. Makarov, A. A. Serdobintsev. Recrystallization of CsPbBr3 nanoparticles in fluoropolymer nonwoven mats for down- and up-conversion of light. Nanomaterials, 11, 412-421(2021).
[6] Y. Zhao, F. Ma, F. Gao, Z. Yin, X. Zhang, J. You. Research progress in large-area perovskite solar cells. Photon. Res., 8, A1-A15(2020).
[7] G. Li, R. Gao, Y. Han, A. Zhai, Y. Liu, Y. Tian, B. Tian, Y. Hao, S. Liu, Y. Wu, Y. Cui. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon. Res., 8, 1862-1874(2020).
[8] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 27, 7162-7167(2015).
[9] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut. Nano Lett., 15, 3692-3696(2015).
[10] M. Lu, J. Guo, S. Sun, P. Lu, X. Zhang, Z. Shi, W. W. Yu, Y. Zhang. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J., 404, 126563(2021).
[11] C. Xie, Y. Zhao, W. Shi, P. Yang. Postsynthetic surface-treatment of CsPbX3 (X = Cl, Br, or I) nanocrystals via CdX2 precursor solution toward high photoluminescence quantum yield. Langmuir, 37, 1183-1193(2021).
[12] S. Pan, Y. Chen, Z. Wang, Y.-W. Harn, J. Yu, A. Wang, M. J. Smith, Z. Li, V. V. Tsukruk, J. Peng, Z. Lin. Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 77, 105043(2020).
[13] C. Zhang, J. Chen, S. Wang, L. Kong, S. W. Lewis, X. Yang, A. L. Rogach, G. Jia. Metal halide perovskite nanorods: shape matters. Adv. Mater., 32, 2002736(2020).
[14] B. Tang, Y. Hu, J. Lu, H. Dong, N. Mou, X. Gao, H. Wang, X. Jiang, L. Zhang. Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire. Nano Energy, 71, 104641(2020).
[15] Y. H. Hsieh, B. W. Hsu, K. N. Peng, K. W. Lee, C. W. Chu, S. W. Chang, H. W. Lin, T. J. Yen, Y. J. Lu. Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold. ACS Nano, 14, 11670-11676(2020).
[16] D. Xing, C. C. Lin, Y. L. Ho, A. S. A. Kamal, I. T. Wang, C. C. Chen, C. Y. Wen, C. W. Chen, J. J. Delaunay. Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater., 31, 2006283(2020).
[17] J. M. Pina, D. H. Parmar, G. Bappi, C. Zhou, H. Choubisa, M. Vafaie, A. M. Najarian, K. Bertens, L. K. Sagar, Y. Dong, Y. Gao, S. Hoogland, M. I. Saidaminov, E. H. Sargent. Deep-blue perovskite single-mode lasing through efficient vapor-assisted chlorination. Adv. Mater., 33, 2006697(2021).
[18] Z. He, B. Chen, Y. Hua, Z. Liu, Y. Wei, S. Liu, A. Hu, X. Shen, Y. Zhang, Y. Gao, J. Liu. CMOS compatible high-performance nanolasing based on perovskite–SiN hybrid integration. Adv. Opt. Mater., 8, 2000453(2020).
[19] S. Wang, J. Yu, H. Ye, M. Chi, H. Yang, H. Wang, F. Cao, W. Li, L. Kong, L. Wang, R. Chen, X. Yang. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing Auger recombination. Adv. Opt. Mater., 9, 2100068(2021).
[20] H. Wang, Z. Dong, H. Liu, W. Li, L. Zhu, H. Chen. Roles of organic molecules in inorganic CsPbX3 perovskite solar cells. Adv. Energy Mater., 11, 2002940(2020).
[21] J. Ren, X. Zhou, Y. Wang. Dual-emitting CsPbX3@ZJU-28 (X = Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem. Eng. J., 391, 123622(2020).
[22] H. Guan, S. Zhao, H. Wang, D. Yan, M. Wang, Z. Zang. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag–In–Zn–S for high-CRI white light-emitting diodes. Nano Energy, 67, 104279(2020).
[23] F. Li, S. Huang, X. Liu, Z. Bai, Z. Wang, H. Xie, X. Bai, H. Zhong. Highly stable and spectrally tunable gamma phase Rb
[24] S. Zhao, Q. Mo, W. Cai, H. Wang, Z. Zang. Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white light-emitting diodes. Photon. Res., 9, 1605-1612(2021).
[25] S. Wang, J. Yu, M. Zhang, D. Chen, C. Li, R. Chen, G. Jia, A. L. Rogach, X. Yang. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett., 19, 6315-6322(2019).
[26] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. V. Kovalenko. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc., 138, 14202-14205(2016).
[27] F. Krieg, S. T. Ochsenbein, S. Yakunin, S. T. Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante, M. V. Kovalenko. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett., 3, 641-646(2018).
[28] D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, X. Tang. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 15, 1901173(2019).
[29] Y. Luo, T. Tan, S. Wang, R. Pang, L. Jiang, D. Li, J. Feng, H. Zhang, S. Zhang, C. Li. Multivariant ligands stabilize anionic solvent-oriented α-CsPbX3 nanocrystals at room temperature. Nanoscale, 13, 4899-4910(2021).
[30] F. Gao, W. Yang, X. Liu, Y. Li, W. Liu, H. Xu, Y. Liu. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem. Eng. J., 407, 128001(2021).
[31] Q. Zhong, J. Liu, S. Chen, P. Li, J. Chen, W. Guan, Y. Qiu, Y. Xu, M. Cao, Q. Zhang. Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy. Adv. Opt. Mater., 9, 2001763(2020).
[32] W. Lin, G. Chen, E. Li, H. Xie, G. Peng, W. Yu, H. Chen, T. Guo. Improved stability and performance of all inorganic perovskite quantum dots synthesized directly with N-alkylmonoamine ligands for light-erasable transistor memory. Org. Electron., 86, 105869(2020).
[33] W. Xue, X. Wang, W. Wang, F. He, W. Zhu, Y. Li. Aluminum distearate–modified CsPbX3 (X = I, Br, or Cl/Br) nanocrystals with enhanced optical and structural stabilities. CCS Chem., 2, 13-23(2020).
[34] X. Li, C. Yang, Y. Yu, Z. Li, J. Lin, X. Guan, Z. Zheng, D. Chen. Dual-modal photon upconverting and downshifting emissions from ultra-stable CsPbBr3 perovskite nanocrystals triggered by co-growth of Tm:NaYbF4 nanocrystals in glass. ACS Appl. Mater. Interfaces, 12, 18705-18714(2020).
[35] T. T. Ngo, I. Suarez, G. Antonicelli, D. Cortizo-Lacalle, J. P. Martinez-Pastor, A. Mateo-Alonso, I. Mora-Sero. Enhancement of the performance of perovskite solar cells, LEDs, and optical amplifiers by anti-solvent additive deposition. Adv. Mater., 29, 1604056(2017).
[36] C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 40, 195-202(2017).
[37] P. K. Roy, G. Haider, H.-I. Lin, Y.-M. Liao, C.-H. Lu, K.-H. Chen, L.-C. Chen, W.-H. Shih, C.-T. Liang, Y.-F. Chen. Multicolor ultralow-threshold random laser assisted by vertical-graphene network. Adv. Opt. Mater., 6, 1800382(2018).
[38] N. Pourdavoud, T. Haeger, A. Mayer, P. J. Cegielski, A. L. Giesecke, R. Heiderhoff, S. Olthof, S. Zaefferer, I. Shutsko, A. Henkel, D. Becker-Koch, M. Stein, M. Cehovski, O. Charfi, H. H. Johannes, D. Rogalla, M. C. Lemme, M. Koch, Y. Vaynzof, K. Meerholz, W. Kowalsky, H. C. Scheer, P. Gorrn, T. Riedl. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films. Adv. Mater., 31, 1903717(2019).
[39] M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, W. Xiang. Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization. J. Eur. Ceram. Soc., 41, 1579-1585(2021).
[40] Z. Zhang, L. Shen, H. Zhang, L. Ding, G. Shao, X. Liang, W. Xiang. Novel red-emitting CsPb1−
[41] C. M. Guvenc, Y. Yalcinkaya, S. Ozen, H. Sahin, M. M. Demir. Gd3+-doped α-CsPbI3 nanocrystals with better phase stability and optical properties. J. Phys. Chem. C, 123, 24865-24872(2019).
[42] D. Chen, Y. Liu, C. Yang, J. Zhong, S. Zhou, J. Chen, H. Huang. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale, 11, 17216-17221(2019).
[43] E. Cao, J. Qiu, D. Zhou, Y. Yang, Q. Wang, Y. Wen. The synthesis of a perovskite CsPbBr3 quantum dot superlattice in borosilicate glass. Chem. Commun., 56, 4460-4463(2020).
[44] G. Shao, S. Liu, L. Ding, Z. Zhang, W. Xiang, X. Liang. K
[45] X. Liu, E. Mei, Z. Liu, J. Du, X. Liang, W. Xiang. Stable, low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br1 perovskite nanocrystals glasses with controlled crystallization. ACS Photonics, 8, 887-893(2021).
[46] Y. Zhang, J. Liu, H. Zhang, Q. He, X. Liang, W. Xiang. Ultra-stable Tb3+: CsPbI3 nanocrystal glasses for wide-range high-sensitivity optical temperature sensing. J. Eur. Ceram. Soc., 40, 6023-6030(2020).
[47] L. Zhang, F. Yuan, H. Dong, B. Jiao, W. Zhang, X. Hou, S. Wang, Q. Gong, Z. Wu. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability. ACS Appl. Mater. Interfaces, 10, 40661-40671(2018).
[48] M. L. De Giorgi, M. Anni. Amplified spontaneous emission and lasing in lead halide perovskites: state of the art and perspectives. Appl. Sci., 9, 4591(2019).
[49] D. Vila-Liarte, M. W. Feil, A. Manzi, J. L. Garcia-Pomar, H. Huang, M. Doblinger, L. M. Liz-Marzan, J. Feldmann, L. Polavarapu, A. Mihi. Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission. Angew. Chem., 59, 17750-17756(2020).
[50] H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun., 10, 1088(2019).
[51] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).
[52] S. Li, D. Lei, W. Ren, X. Guo, S. Wu, Y. Zhu, A. L. Rogach, M. Chhowalla, A. K. Jen. Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat. Commun., 11, 1192(2020).

Set citation alerts for the article
Please enter your email address