
- Chinese Optics Letters
- Vol. 20, Issue 2, 020201 (2022)
Abstract
1. Introduction
Along with the development of the magneto-optical trap (MOT) technique, many species of atoms have been successfully trapped and greatly isolated from the external environment[
In this Letter, we focus on the optical nanofiber trapping scheme. By applying dark MOT (DMOT) technique, the trapped cesium atoms are transferred to the lower hyperfine ground state (dark state). The minimized atomic collisions and radiation pressure allow the higher atomic density and lower atomic temperature, which are the critical elements to the loading efficiency of the nanofiber optical lattice. With the application of DMOT, the bright–dark state transfer efficiency of nanofiber trapped atoms reaches 98%, providing the essential requirements for developing the quantum repeater with a fiber-based hybrid system[
2. Experiments
As shown in Fig. 1(a), the diameter of the nanofiber is 500 nm over a length of 5 mm fabricated from a single mode fiber (Fibercore, SM800-5.6-125) by flame brushing[
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.(a) Schematic of a nanofiber with 500 nm in diameter. (b) Schematic of the apparatus. The atomic arrays are trapped in the evanescent field near the nanofiber surface. The magic-wavelength optical lattice consists of two pairs of counter-propagating beams, including red detuning standing wave light (935 nm) to make the attractive potential and blue detuning traveling wave light (686.1 nm, 686.5 nm) to make the repulsive penitential. DM, dichroic mirror; HW, half-waveplate; SPCM, single photon counter module. (c) Energy level diagram of cesium. T, trapping light; R, repumping light; D, depumping light.
3. Results
To increase the loading efficiency for the nanofiber optical lattice, we optimized the polarization gradient cooling progress and measured the corresponding atomic temperature from DMOT. The trapping power of each beam is fixed at
By applying time of flight, we measured the temperature of nanofiber trapped atoms loading from DMOT, which is compared with normal MOT, as shown in Fig. 2. The changes of the Gaussian diameter of the atomic ensemble obey
Figure 2.Temperature measurement of atoms trapped from DMOT and normal MOT. After turning off the magnetic field, the atoms are probed with different flying times.
Figure 3 shows the absorption spectra of nanofiber trapped atoms loading from DMOT and normal MOT. After the polarization gradient cooling progress, a frequency fixed probe pulse duration of 1 ms is input into the nanofiber, interacting with the nanofiber trapped atoms by the evanescent field of the fiber-guided mode. The probe power is set to be 1 pW to avoid the recoil heating effect[
Figure 3.(a), (b) Absorption of nanofiber trapped atoms loading from normal MOT. The corresponding frequency transitions are separately 6S1/2, F = 3 → 6P3/2, F′ = 2 and 6S1/2, F = 4 → 6P3/2, F′ = 5. (c), (d) Absorption of trapped atoms loading from DMOT with the same transitions as in (a) and (b). Each dot is averaged from 10 experimental runs with the error bar representing the standard errors in photon statistics. The solid lines are the fitted consequence in theory.
To quantify the trapped atomic numbers and bright–dark state transfer efficiency, we measured the absorption power for nanofiber trapped atoms loading from DMOT, as shown in Fig. 4. The black and red lines are fitted based on the generalized Beer’s law. In the limit of large input power and saturated absorption, we can conclude that
Figure 4.Saturation measurement of power absorption for nanofiber trapped atoms with DMOT. (a) For transition 6S1/2, F = 3 → 6P3/2, F′ = 2. The inset shows the lifetime of nanofiber trapped atoms in the optical lattice with exponential fitting (blue line). (b) For transition 6S1/2, F = 4 → 6P3/2, F′ = 5. The black and red lines are fitted results following a generalized Beer’s law. The data are averaged 10 times with a standard error bar.
The lifetime of trapped atoms in the nanofiber optical lattice is also measured, as shown in the inset of Fig. 4(a). The input power is fixed at a saturation level (8 nW) to meet the premise of Eq. (3). For lifetime measurement of the inset of Fig. 4(a), the atomic number is calculated and scaled. For nanofiber trapped atoms with a dark state, the ultimate exponential fitted lifetime is
4. Conclusion
In conclusion, we have realized dark state atomic trapping in a nanofiber optical lattice by applying the DMOT. The bright–dark state transfer efficiency of trapped atoms reaches about 98%, confirmed by the saturation measurement of power absorption. The AC Stark shift is also strongly suppressed by using the cesium magic-wavelength trapping potential (blue-detuned traveling wave and red-detuned standing wave). This work contributes to the realization of a fiber-based quantum repeater and hybrid quantum network construction.
References
[1] E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59, 2631(1987).
[2] G. Colzi, G. Durastante, E. Fava, S. Serafini, G. Lamporesi, G. Ferrari. Sub-Doppler cooling of sodium atoms in gray molasses. Phys. Rev. A, 93, 023421(2016).
[3] D. Nath, R. K. Easwaran, G. Rajalakshmi, C. S. Unnikrishnan. Quantum-interference-enhanced deep sub-Doppler cooling of 39 K atoms in gray molasses. Phys. Rev. A, 88, 053407(2013).
[4] H. J. Kimble. The quantum internet. Nature, 453, 1023(2008).
[5] Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, J. W. Pan. Experimental demonstration of a BDCZ quantum repeater node. Nature, 454, 1098(2008).
[6] B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M. Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, J. W. Pan. A millisecond quantum memory for scalable quantum networks. Nat. Phys., 5, 95(2009).
[7] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, H. J. Kimble. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature, 438, 828(2005).
[8] C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, H. J. Kimble. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science, 316, 1316(2007).
[9] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33(2011).
[10] E. Ghasemian, M. K. Tavassoly. Population dynamics of ultra-cold atoms interacting with radiation fields in the presence of inter-atomic collisions. Chin. Opt. Lett., 19, 122701(2021).
[11] W. Zhuang, Y. Zhao, S. K. Wang, Z. J. Fang, F. Fang, T. C. Li. Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms. Chin. Opt. Lett., 19, 030201(2021).
[12] D. Q. Su, R. J. Liu, Z. H. Ji, X. D. Qi, Z. X. Song, Y. T. Zhao, L. T. Xiao, S. T. Jia. Observation of ladder-type electromagnetically induced transparency with atomic optical lattices near a nanofiber. New J. Phys., 21, 043053(2019).
[13] Z. X. Song, X. Y. Yue, Y. Luo, H. D. Li, Y. T. Zhao. Absorption saturation measurement using the tapered optical nanofiber in a hot cesium vapor. Chin. Opt. Lett., 17, 031901(2019).
[14] D. Q. Su, R. J. Liu, C. B. Zhang, Z. H. Ji, Y. T. Zhao, L. T. Xiao, S. T. Jia. Laser frequency stabilization in sub-nanowatt level using nanofibers. Phys. D, 51, 465001(2018).
[15] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett., 104, 203603(2010).
[16] S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, A. Rauschenbeutel. Dispersive optical interface based on nanofiber-trapped atoms. Phys. Rev. Lett., 107, 243601(2011).
[17] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroŭte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett., 109, 033603(2012).
[18] T. Grünzweig, A. Hilliard, M. McGovern, M. F. Andersen. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys., 6, 951(2010).
[19] A. Carpentier, Y. H. Fung, P. Sompet, A. J. Hilliard, T. G. Walker, M. F. Andersen. Preparation of a single atom in an optical microtrap. Laser Phys. Lett., 10, 125501(2013).
[20] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473(2017).
[21] N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, J. Laurat. Waveguide-coupled single collective excitation of atomic arrays. Nature, 566, 359(2019).
[22] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S. Rind, P. Schneeweiss, A. S. Sø rensen, J. Volz, A. Rauschenbeutel. Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nat. Photon., 14, 719(2020).
[23] C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica, 2, 353(2015).
[24] B. Gouraud, D. Maxein, A. Nicolas, O. Morin, J. Laurat. Demonstration of a memory for tightly guided light in an optical nanofiber. Phy. Rev. Lett., 114, 180503(2015).
[25] F. Orucevi, V. Lefèvre-Seguin, J. Hare. Transmittance and near-field characterization of sub-wavelength tapered optical fibers. Opt. Express, 15, 13624(2007).
[26] A. Stiebeiner, R. Garcia-Fernandez, A. Rauschenbeutel. Design and optimization of broadband tapered optical fibers with a nanofiber waist. Opt. Express, 18, 22677(2010).
[27] T. Aoki. Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators. Jpn J. Appl. Phys., 49, 118001(2010).
[28] J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston. Ultrahigh transmission optical nanofibers. AIP Adv., 4, 067124(2014).
[29] S. Wolf, S. J. Oliver, D. S. Weiss. Suppression of recoil heating by an optical lattice. Phys. Rev. Lett., 85, 4249(2000).
[30] D. E. Chang, J. Ye, M. D. Lukin. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock. Phys. Rev. A, 69, 023810(2004).

Set citation alerts for the article
Please enter your email address