
- Chinese Optics Letters
- Vol. 19, Issue 6, 060004 (2021)
Abstract
1. Introduction
Silicon on insulator (SOI) technology in the semiconductor industry has promoted the evolution and applications of compact photonic integrated devices in the past few decades[
To achieve efficient wavelength conversion in LNOI waveguides, phase matching among the interacting waves should be rigorously satisfied, relying on several schemes such as quasi-phase matching (QPM)[
In this Letter, we theoretically propose an alternative method to achieve highly efficient SHG assisted with the hybrid Si-LN waveguide. For
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Theoretical Design
To demonstrate the design principle, we made an elaborate investigation in
The schematic structure of the proposed
Figure 1.Highly efficient SHG in modal phase-matched z-cut Si-LNOI hybrid waveguide. (a) Schematic and working principle of the Si-LN hybrid waveguide. (b) Cross-section schematic of the waveguide structure.
In order to access the largest nonlinear coefficient in the
Figure 2.Design of the LN etchless hybrid waveguide. Effective indices of the hybrid modes at both pump and SH wavelengths varying with (a) Si height and (c) Si width. (b), (d) Detailed phase matching conditions between TM01 at 775 nm and TM00 at 1550 nm of (a), (c). (e) Optical field (Ez components) of the phase-matched modes at both wavelengths in the all space and nonlinear region. (f) Ez as a function of the vertical position z at the center of the waveguide.
3. Calculation and Simulation
The typical characterization of nonlinear conversion for a lossless waveguide without pump depletion is the normalized efficiency
Figure 3.Theoretical calculations and full-wave simulations. (a) Calculated normalized conversion efficiency as a function of the propagation length. (b) Simulation result in comparison with theory result. (c) Simulated SHG process in a 10-µm-long hybrid z-cut waveguide for demonstration. (d) Schematic of a fully integrated Si/LN hybrid system.
4. Discussion and Conclusion
In general, SHG in periodically poled waveguides is superior to that in modal dispersion phase-matched waveguides in efficiency, because the interaction waves in the former are both fundamental modes, while the SH wave in the latter usually is a higher-order mode, which severely undermines mode overlap with the pump wave. However, in consideration of the fabrication technology, the circumstances usually reverse. To tackle this conflict, our proposed Si-LN hybrid waveguide can maintain a high efficiency in the SHG process while simplifying the fabrication process. Within the fabrication capability, the amorphous Si can be deposited using plasma enhanced chemical vapor deposition (PECVD), followed by dry etching using RIE to form the stripe. It is worth noting that, although various materials can be employed for defining the stripe, Si is the optimal choice currently considering the high refractive index and compatibility to the Si photonics platform. In this regard, our strategy is suitable for ultrahigh-efficiency wavelength conversion within a short distance for on-chip integrated optical devices. For example, it would be possibly adopted for the telecom light conversion from the near-infrared (NIR) to short-wavelength SHG by vertical adiabatic waveguide couplers [e.g., see Fig. 3(d)], which would favor on-chip detection, modulation, and routing within LN photonic chips.
In conclusion, we have proposed a new design of an LNOI etch-free hybrid waveguide to address efficient on-chip SHG by integration of high refractive index material (Si) and
References
[1] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600(2006).
[2] P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573(2013).
[3] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).
[4] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746(2015).
[5] S. Jin, L. Xu, H. Zhang, Y. Li. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photon. Technol. Lett., 28, 736(2016).
[6] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).
[7] I. Krasnokutska, J. J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897(2018).
[8] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Loncar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).
[9] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).
[10] R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, Y. Cheng. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish. Opt. Lett., 44, 4698(2019).
[11] D. Pohl, M. Reig Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, R. Grange. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon., 14, 24(2019).
[12] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon., 13, 359(2019).
[13] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).
[14] I. Krasnokutska, R. J. Chapman, J. J. Tambasco, A. Peruzzo. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express, 27, 17681(2019).
[15] B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, J. Xu. Lithium niobate metasurfaces. Laser Photon. Rev., 13, 1800312(2019).
[16] L. Carletti, C. Li, J. Sautter, I. Staude, C. De Angelis, T. Li, D. N. Neshev. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express, 27, 33391(2019).
[17] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488(2012).
[18] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[19] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, M. Loncar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924(2014).
[20] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron., 58, 11429(2015).
[21] C. Wang, Z. Li, M. H. Kim, X. Xiong, X. F. Ren, G. C. Guo, N. Yu, M. Loncar. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).
[22] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872(2018).
[23] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).
[24] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Loncar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).
[25] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).
[26] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).
[27] B. Fang, H. Li, S. Zhu, T. Li. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photon. Res., 8, 1296(2020).
[28] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).
[29] A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, S. Fathpour. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941(2016).
[30] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).
[31] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 · cm−2. Opt. Express, 27, 25920(2019).
[32] A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, A. Mitchell. Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage. Opt. Express, 27, 23919(2019).
[33] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40(2020).
[34] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).
[35] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tunnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715(2015).
[36] L. Cai, Y. Wang, H. Hu. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun., 387, 405(2017).
[37] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. F. Ren, G. C. Guo, M. Loncar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963(2017).
[38] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006(2018).
[39] J.-Y. Chen, Y. M. Sua, H. Fan, Y.-P. Huang. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum, 1, 229(2018).
[40] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation. Laser Photon. Rev., 13, 1800288(2019).

Set citation alerts for the article
Please enter your email address