
- Photonics Research
- Vol. 10, Issue 8, 1931 (2022)
Abstract
1. INTRODUCTION
Optical frequency combs (OFCs) have been attracting significant interest over the last two decades as excellent broadband coherent light sources, revolutionizing optical frequency metrology and spectroscopy [1–4]. Investigations of OFCs in a wide range of wavelengths from visible to mid-infrared (MIR) have been reported [5,6]. The MIR spectral region (
Recently, there have been several demonstrations of MIR frequency comb generation based on microresonators, for example, silicon nitride (
In this paper, we demonstrate a microresonator-based broadband Kerr frequency comb centered at about 4.78 μm pumped by the QCL. The simulation results show that the intracavity power exhibits characteristic step-like patterns via scanning the frequency of the pump laser from the blue to red detuning, and the microcombs will undergo the modulation instability (MI), multi-soliton, and steady single-soliton states in this process. The temporal and spectral evolution dynamics of single soliton formation in the
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. DEVICE DESIGN
The
Figure 1.(a) Image of the
3. NUMERICAL SIMULATION
As we all know, to generate an MIR Kerr frequency comb, engineering of the microresonator dispersion plays a critical role. The resonance frequency
Figure 2.(a) Integrated dispersion curve around the pump versus mode number
To understand and observe the detailed process associated with soliton formation in a
To further reveal single-soliton-based frequency comb generation dynamics in the
Figure 3.(a) Temporal and (b) spectral evolution of the single soliton formation. (c) Evolution of intracavity average power plotted versus time. The inset shows the zoom-in for the dashed square.
4. EXPERIMENTAL DEMONSTRATION
Schematic illustration of the experimental setup for MIR OFC generation using a crystalline
Figure 4.Experimental setup for the generation of MIR OFCs in the
The QCL module is operated at 4.78 μm as illustrated in Fig. 5(a) (black line), and its tunable wavelength range is approximately 10 nm by adjusting the working temperature. The MIR frequency comb is generated by pumping a cavity resonance of a
Figure 5.MIR frequency comb spectrum with different pump-resonance detuning in the
Next, we investigate the generation of MIR frequency comb by optimizing pump-resonance detuning and pump power in a
Figure 6.MIR frequency comb spanning from 3380 nm to 7760 nm. Spectrum generated by a
5. SUMMARY
In conclusion, we report the broadband MIR OFC generation in a
Acknowledgment
Acknowledgment. The authors thank Prof. Haitao Guo of Xi’an Institute of Optics and Precision Mechanics of CAS for the support of mid-infrared fibers, Prof. Fengqi Liu of Institute of Semiconductors of CAS for the support of QCLs, and Zhejiang University and Peking University for the support of tapered fiber fabrication.
References
[1] S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, M. Qi. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun., 8, 372(2017).
[2] S. Wan, R. Niu, Z.-Y. Wang, J.-L. Peng, M. Li, J. Li, G.-C. Guo, C.-L. Zou, C.-H. Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res., 8, 1342-1349(2020).
[3] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).
[4] F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-F. Han, G.-C. Guo, W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 14, 1900190(2020).
[5] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C.-L. Zou, H. X. Tang. Pockels soliton microcomb. Nat. Photonics, 15, 21-27(2021).
[6] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).
[7] M. Seidel, X. Xiao, A. H. Syed, G. Arisholm, A. Hartung, T. Z. Kevin, G. S. Peter, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv., 4, eaaq1526(2018).
[8] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).
[9] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2018).
[10] M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, A. L. Gaeta. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).
[11] G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, N. R. Newbury. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics, 12, 202-208(2018).
[12] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).
[13] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).
[14] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).
[15] C. Xiang, J. Liu, J. Guo, L. Chang, N. W. Rui, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, J. K. Tobias, E. B. John. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).
[16] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).
[17] M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, A. L. Gaeta. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).
[18] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40, 3468-3471(2015).
[19] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).
[20] I. S. Grudinin, K. Mansour, N. Yu. Properties of fluoride microresonators for mid-IR applications. Opt. Lett., 41, 2378-2381(2016).
[21] M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken. Quantum cascade lasers: from tool to product. Opt. Express, 23, 8462-8475(2015).
[22] L. Tombez, S. Schilt, D. Hofstetter, T. Südmeyer. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference. Opt. Lett., 38, 5079-5082(2013).
[23] M. Wang, Y. Yang, L. Meng, X. Jin, Y. Dong, L. Zhang, W. Xu, K. Wang. Fabrication and packaging for high-
[24] B. Bendow, H. G. Lipson, S. S. Mitra. Multiphonon infrared absorption in highly transparent MgF2. Phys. Rev. B, 20, 1747-1749(1979).
[25] D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, A. Fuerbach. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).
[26] G. Li, X. Peng, S. Dai, Y. Wang, M. Xie, L. Yang, C. Yang, W. Wei, P. Zhang. Highly coherent 1.5–8.3 μm broadband supercontinuum generation in tapered As–S chalcogenide fibers. J. Lightwave Technol., 37, 1847-1852(2019).
[27] Y. Xie, D. Cai, H. Wu, J. Pan, N. Zhou, C. Xin, S. Yu, P. Wang, X. Jiang, J. Qiu, X. Guo, L. Tong. Mid-infrared chalcogenide microfiber knot resonators. Photon. Res., 8, 616-621(2020).
[28] J. K. Tobias, L. G. Alexander, M. Lipson, L. G. Michael. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[29] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).
[30] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).
[31] D. K. Agustika, I. Mercuriani, C. W. Purnomo, S. Hartono, K. Triyana, D. D. Iliescu, M. S. Leeson. Fourier transform infrared spectrum pre-processing technique selection for detecting PYLCV-infected chilli plants. Spectrochim. Acta A, 278, 121339(2022).
[32] G. Lin, Y. K. Chembo. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23, 1594-1604(2015).
[33] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).
[34] B. Zhang, P. Zeng, Z. Yang, D. Xia, J. Zhao, Y. Sun, Y. Huang, J. Song, J. Pan, H. Cheng, D. Choi, Z. Li. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photon. Res., 9, 1272-1279(2021).
[35] N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, S. G. Murdoch. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701-706(2019).
[36] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb. European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference, CB_10_16(2015).
[37] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb generation. Conference on Lasers and Electro-Optics (CLEO), SW4F.2(2015).
[38] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb. Frontiers in Optics, FTu3E.2(2015).

Set citation alerts for the article
Please enter your email address