• Optoelectronics Letters
  • Vol. 10, Issue 6, 467 (2014)
Tao LU*
Author Affiliations
  • College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • show less
    DOI: 10.1007/s11801-014-4102-y Cite this Article
    LU Tao. Photoacoustic Doppler flowmetry of carbon particles flow using an autocorrelation method[J]. Optoelectronics Letters, 2014, 10(6): 467 Copy Citation Text show less

    Abstract

    In order to measure the axial flowing velocity of carbon particle suspension with particle diameter of tens of micrometers, the photoacoustic Doppler (PAD) frequency shift is calculated based on a series of individual A scans using an autocorrelation method. A 532 nm pulsed laser with repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused piezoelectric (PZT) ultrasound transducer with central frequency of 5 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by the Hilbert transformation from time-domain photoacoustic signal, and then it is autocorrelated to calculate the Doppler frequency shift. The photoacoustic Doppler frequency shift is calculated by averaging the autocorrelation results of some individual A scans. The advantage of the autocorrelation method is that the time delay in autocorrelation can be defined by user, and the requirement of high pulse repetition rate is avoided. The feasibility of the proposed autocorrelation method is preliminarily demonstrated by quantifying the motion of a carbon particle suspension with flow velocity from 5 mm/s to 60 mm/s. The experimental results show that there is an approximately linear relation between the autocorrelation result and the setting velocity.
    LU Tao. Photoacoustic Doppler flowmetry of carbon particles flow using an autocorrelation method[J]. Optoelectronics Letters, 2014, 10(6): 467
    Download Citation