• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 3, 329 (2024)
Rui-Ze FENG1、2, Shu-Rui CAO1、2, Zhi-Yu FENG1、2, Fu-Gui ZHOU1、2, Tong LIU1, Yong-Bo SU1、2, and Zhi JIN1、2、*
Author Affiliations
  • 1High-Frequency High-Voltage Device and Integrated Circuits Center,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China
  • 2School of Integrated Circuits,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.03.006 Cite this Article
    Rui-Ze FENG, Shu-Rui CAO, Zhi-Yu FENG, Fu-Gui ZHOU, Tong LIU, Yong-Bo SU, Zhi JIN. InGaAs/InAlAs InP-based HEMT with the current cutoff frequency of 441 GHz[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 329 Copy Citation Text show less
    References

    [1] E. N. Grossman, K. Leong, X. Mei et al. Low-Frequency Noise and Passive Imaging With 670 GHz HEMT Low-Noise Amplifiers. IEEE Transactions on Terahertz Science and Technology, 4, 749-752(2014).

    [2] I. Kallfass, P. Harati, I. Dan et al. MMIC chipset for 300 GHz indoor wireless communication, 1-4(2015).

    [3] J. Schleeh, N. Wadefalk, P. -Å Nilsson. et al. Cryogenic Broadband Ultra-Low-Noise MMIC LNAs for Radio Astronomy Applications. IEEE Transactions on Microwave Theory and Techniques, 61, 871-877(2013).

    [4] Y H Zhong, B Yang, MM Chang et al. Enhancement of radiation hardness of InP-based HEMT with double Si-doped plane. Chinese Physics B, 29, 532-536(2020).

    [5] X Mei, W Yoshida, M Lange et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process. IEEE Electron Device Letters, 36, 327-329(2015).

    [6] Hyeon-Bhin Jo, Seung-Won Yun, Jun-Gyu Kim et al. Lg = 19 nm In0.8Ga0.2As composite-channel HEMTs with fT = 738 GHz and fmax = 492 GHz, 8.4.1-8.4.4(2020).

    [7] D. -H. Kim, B. Brar, J. A. del Alamo. fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/µm, 13.6.1-13.6.4(2011).

    [8] D Y Yun, H B Jo, S W Son et al. Impact of the Source-to-Drain Spacing on the DC and RF Characteristics of InGaAs/InAlAs High-Electron Mobility Transistors. IEEE Electron Device Letters, 39, 1844-1847(2018).

    [9] H B Jo, J M Baek, D Y Yun et al. Lg = 87 nm InAlAs/InGaAs High-Electron- Mobility Transistors With a g m_max of 3 S/mm and fT of 559 GHz. IEEE Electron Device Letters, 39, 1640-1643(2018).

    [10] M. Barsky, M. Biedenbender, X. Mei et al. Advanced InP and GaAs HEMT MMIC technologies for MMW commercial products, 147-148(2007).

    [11] M. Barsky, M. Biedenbender, X. Mei et al. Advanced InP and GaAs HEMT MMIC technologies for MMW commercial products, 147-148(2007).

    [12] Dae-Hyun Kim, J. A. del Alamo, Jae-Hak Lee et al. The Impact of Side-Recess Spacing on the Logic Performance of 50 nm InGaAs HEMTs, 177-180(2006).

    [13] Zhihang Tong, Peng Ding, Yongbo Su et al. Surface Improvement of InAlAs/InGaAs InP-Based HEMT Through Treatments of UV/Ozone and TMAH. IEEE Journal of the Electron Devices Society, 8, 600-607(2020).

    [14] Zhihang Tong, Peng Ding, Yongbo Su et al. Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs. Chinese Physics B, 30, 018501(2021).

    [15] Ruize Feng, Bo Wang, Shurui Cao et al. Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs. Chinese Physics B, 31, 788-792(2022).

    [16] Yanfu Wang, Bo Wang, Ruize Feng et al. Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology. Chinese Physics B, 31, 018502(2022).

    [17] Hideaki Matsuzaki, Takashi Maruyama, Toshihiko Koasugi et al. Lateral scale down of InGaAs/InAs composite-channel HEMTs with tungsten-based tiered ohmic structure for 2-S/mm gm and 500-GHz fT. IEEE Transactions on electron devices, 54, 378-384(2007).

    [18] D H Kim, J a D Alamo, P Chen et al. 50-nm E-mode In07Ga0.3As PHEMTs on 100-mm InP substrate with fmax> 1 THz, 30.6. 1-30.6. 4(2010).

    [19] T. -W Kim., D. -H Kim., J. A del Alamo.. 60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics, 30.7.1-30.7.4(2010).

    [20] EY Chang, CI Kuo, HT Hsu et al. InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications. Applied Physics Express, 6, 034001(2013).

    [21] L Zhang, Z Feng, D Xing et al. 70 nm gate-length THz InP-based In0. 7Ga 0.3As/In0. 52Al 0.48As HEMT with fmax of 540 GHz. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4(2014).

    [22] M. Samnouni, N. Wichmann, X. Wallart et al. 75 nm Gate Length PHEMT With fmax = 800 GHz Using Asymmetric Gate Recess: RF and Noise Investigation. IEEE Transactions on Electron Devices, 68, 4289-4295(2021).

    Rui-Ze FENG, Shu-Rui CAO, Zhi-Yu FENG, Fu-Gui ZHOU, Tong LIU, Yong-Bo SU, Zhi JIN. InGaAs/InAlAs InP-based HEMT with the current cutoff frequency of 441 GHz[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 329
    Download Citation